1滑块、子弹打木块模型之一子弹打木块模型:包括一物块在木板上滑动等。μNS相=ΔEk系统=Q,Q为摩擦在系统中产生的热量。②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动:包括小车上悬一单摆单摆的摆动过程等。小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。一模型理解质量为m的子弹,以速度V0水平射入光滑水平面上质量为M的木块中未穿出。子弹深入木块时所受的阻力大小恒为f符合规律:动量守恒定律:mV。=(M+m)V动能定理:子弹-fSm=mV2/2-mV02/2木块-fSM=MV2/2-0功能关系:fd=mV02/2-(M+m)V2/2能量转化:子弹动能减少:fSm=mV02/2-mV2/2木块动能增加:fSM=MV2/2系统机械能减少:fSm-fSM=mV02/2-(M+m)V2/2内能增量:fSm-fSM=mV02/2-(M+m)V2/2产生热量:fd=fSm-fSM=mV02/2-(M+m)V2/2二典型例题1如图所示,质量为M的平板小车停放于光滑水平面上,在小车的左端放着一个质量为m的小铁块,小铁块与平板车之间的动摩擦因数为μ,小车足够长。现给小铁块一个瞬间冲量,使其获得大小为v0的初速度而在小车上向右滑动,求小车和小铁块的共同速度是多少?小铁块在车上的滑行时间是多少?2如图所示,质量m=2kg的物体,以水平速度v0=5m/s滑上静止在光滑水平面上的平板小车,小车质量M=8kg,物体与小车车面之间的动摩擦因数μ=0.8,取g=10m/s2,设小车足够长,求:(1)物体在小车上滑行多长的时间相对小车静止?(2)物体相对小车滑行的时间距离是多少?(3)在物体相对小车滑动的过程中,有多少机械能转化为内能?3.如图示,一质量为M长为l的长方形木块B放在光滑水平面上,在其右端放一质量为m的小木块A,m<M,现以地面为参照物,给A和B以大小相等、方向相反的初速度(如图),Mmv0v02v0ABv0ABv0lA2v0v0BCAv05mBLv0mv使A开始向左运动,B开始向右运动,但最后A刚好没有滑离B板。以地面为参照系。⑴若已知A和B的初速度大小为v0,求它们最后速度的大小和方向;⑵若初速度的大小未知,求小木块A向左运动到最远处(从地面上看)到出发点的距离。4.如图所示,在光滑水平面上有一辆质量为M=4.00㎏的平板小车,车上放一质量为m=1.96㎏的木块,木块到平板小车左端的距离L=1.5m,车与木块一起以v=0.4m/s的速度向右行驶,一颗质量为m0=0.04㎏的子弹以速度v0从右方射入木块并留在木块内,已知子弹与木块作用时间很短,木块与小车平板间动摩擦因数μ=0.2,取g=10m/s2。问:若要让木块不从小车上滑出,子弹初速度应满足什么条件?5.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m,一质量与木板相同的金属块,以v0=2.00m/s的初速度向右滑上木板A,金属块与木板间动摩擦因数为μ=0.1,g取10m/s2。求两木板的最后速度。6.一平直木板C静止在光滑水平面上,今有两小物块A和B分别以2v0和v0的初速度沿同一直线从长木板C两端相向水平地滑上长木板。如图示。设物块A、B与长木板C间的动摩擦因数为μ,A、B、C三者质量相等。⑴若A、B两物块不发生碰撞,则由开始滑上C到A、B都静止在C上为止,B通过的总路程多大?经历的时间多长?⑵为使A、B两物块不发生碰撞,长木板C至少多长?7.如图所示,C是放在光滑水平面上的一块木板,木板质量为3m,在木板的上面有两块质量均为m的小木块A和B,它们与木板间的动摩擦因数均为μ。最初木板静止,A、B两木块同时以方向水平向右的初速度v0和2v0在木板上滑动,木板足够长,A、B始终未滑离木板。求:(1)木块B从刚开始运动到与木板C速度刚好相等的过程中,木块B所发生的位移;(2)木块A在整个过程中的最小速度。8.在光滑水平面上静止放置一长木板B,B的质量为M=2㎏同,B右端距竖直墙5m,现有一小物块A,质量为m=1㎏,以v0=6m/s的速度从B左端水平地滑上B。如图所示。A、B间动摩擦因数为μ=0.4,B与墙壁碰撞时间极短,且碰撞时无能量损失。取g=10m/s2。求:要使物块A最终不脱离B木板,木板B的最短长度是多少?CABv02v03v0ABCv9.一质量为m、两端有挡板的小车静止在光滑水平面上,两挡板间距离为1.1m,在小车正中放一质量为m、长度为0.1m的物块,物块与小车间动摩擦因数μ=0.15。如图示。现给物块一个水平向右的瞬时冲量,使物块获得v0=6m/s的水平初速度。物块与挡板碰撞时间极短且无能量损失。求:⑴小车获得的最终速度;⑵物块相对小车滑行的路程;⑶物块与两挡板最多碰撞了多少次;⑷物块最终停在小车上的位置。10.如图所示,光滑水平面上有一质量M=4.0kg的平板车,车的上表面是一段长L=1.0m的粗糙水平轨道,水平轨道左侧连一半径R=0.25m的1/4光滑圆弧轨道,圆弧轨道与水平轨道在0’点相切.车右端固定一个尺寸可以忽略、处于锁定状态的压缩弹簧,一质量m=1.0kg的小物块紧靠弹簧放置,小物块与水平轨道间的动摩擦因数μ=0.5.整个装置处于静止状态.现将弹簧解除锁定,小物块被弹出,恰能到达圆弧轨道的最高点A.取g=10m/s2.求:(1)解除锁定前弹簧的弹性势能;(2)小物块第二次经过0’点时的速度大小;(3)小物块与车最终相对静止时距O,点的距离.11.两物块A、B用轻弹簧相连,质量均为2kg,初始时弹簧处于原长,A、B两物块都以v=6m/s的速度在光滑的水平地面上运动,质量4kg的物块C静止在前方,如图所示。B与C碰撞后二者会粘在一起运动。求在以后的运动中:(1)当弹簧的弹性势能最大时,物块A的速度为多大?(2)系统中弹性势能的最大值是多少?12.如图所示,AOB是光滑水平轨道,BC是半径为R的1/4光滑圆弧轨道,两轨道恰好相切。质量为M的小木块静止在O点,一质量为m(m=M/9)的子弹以某一初速度水平向右射入小木块内不穿出,木块恰好滑到圆弧的最高点C处(子弹、小木块均可看成质点)。求:①子弹射入木块之前的速度Vo多大?②若每当小木块在O点时,立即有相同的子弹以相同的速度Vo射入小木块,并留在其中,则当第6颗子弹射入小木块后,小木块沿光滑圆弧上升的高度h是多少?③若当第n颗子弹射入小木块后,小木块沿光滑圆弧能上升的最大高度为R/4,则n值是多少?413.如图所示,光滑半圆轨道竖直放置,半径为R,一水平轨道与圆轨道相切,在水平光滑轨道上停着一个质量为M=0.99kg的木块,一颗质量为m=0.01kg的子弹,以vo=400m/s的水平速度射入木块中,然后一起运动到轨道最高点水平抛出,当圆轨道半径R多大时,平抛的水平距离最大?最大值是多少?(g取10m/s2)