匀变速直线运动速度与时间的关系教学案例

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2.匀变速直线运动的速度与时间的关系教学案例★教学目标:(一)知识与技能(1)知道匀速直线运动t图象。(2)知道匀变速直线运动的t图象,概念和特点。(3)掌握匀变速直线运动的速度与时间关系的公式v=v0+at,并会应用它进行计算。(二)过程与方法(1)让学生初步了解探究学习的方法.(2)培养学生的逻辑推理能力,数形结合的能力,应用数学知识的解决物理问题的能力。(三)情感、态度与价值观(1)培养学生基本的科学素养。(2)培养学生建立事物是相互联系的唯物主义观点。(3)培养学生应用物理知识解决实际问题的能力。★教学重点重点:(1)匀变速直线运动的t图象,概念和特点。(2)匀变速直线运动的速度与时间关系的公式v=v0+at,并会应用它进行计算。★教学难点应用t图象推导出匀变速直线运动的速度与时间关系的公式v=v0+at。★教学方法教授法、讨论法、提问法、实验演示法、举例说明法。★教学过程(一)导入新课上节课,同学们通过实验研究了速度与时间的关系,小车运动的υ-t图象。设问:小车运动的υ-t图象是怎样的图线?(让学生画一下)学生画出小车运动的υ-t图象,并能表达出小车运动的υ-t图象是一条倾斜的直线。速度和时间的这种关系称为线性关系。学生坐标轴画反的要更正,并强调调,纵坐标取速度,横坐标取时间。设问:在小车运动的υ-t图象上的一个点P(t1,v1)表示什么?学生回答:t1时刻,小车的速度为v1;(学生回答不准确,教师补充、修正。).(二)讲授新课(1)匀变速直线运动概念的引入:向学生展现问题:υ/(m·s-1)t/st0υ0υ/(m·s-1)t/st0υ00提问:这个υ-t图象有什么特点?它表示物体运动的速度有什么特点?物体运动的加速度又有什么特点?学生分小组讨论:每一小组由一位同学陈述小组讨论的结果。学生回答:图象是一条平行于时间轴的直线。物体的速度不随时间变化,即物体作匀速直线运动。作匀速直线运动的物体,∆v=0,tv=0,所以加速度为零。向学生展现问题:提问:在上节的实验中,小车在重物牵引下运动的v-t图象是一条倾斜的直线,物体的加速度有什么特点?直线的倾斜程度与加速度有什么关系?它表示小车在做什么样的运动?老师引导:从图可以看出,由于v-t图象是一条倾斜的直线,速度随着时间逐渐变大,在时间轴上取取两点t1,t2,则t1,t2间的距离表示时间间隔∆t=t2—t1,t1时刻的速度为v1,t2时刻的速度为v2,则v2—v1=∆v,∆v即为间间隔∆t内的速度的变化量。提问:∆v与∆t是什么关系?每一小组由一位同学陈述小组讨论的结果。v-t图象是一条倾斜的直线,由作图可知无论∆t选在什么区间,对应的速度v的变化量∆v与时间t的变化量∆t之比tv都是一样的等于直线的斜率,即加速度不变。所以v-t图象是一条倾斜的直线的运动,是加速度不变的运动。知识总结:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。(uniformvariablerectilinearmotion)。匀变速直线运动的v-t图象是一条倾斜的直线。物体做匀变速直线运动的条件:1。沿着一条直线运动2.加速度不变对匀变速直线运动的理解:要注意以下几点:加速度是矢量,既有大小又有方向。加速度不变,指的是加速度的大小和方向都不变。若物体虽然沿直线运动,且加速度的大小不变,但加速度的方向发生了变化,从总体上讲,物体做的并不是匀变速直线运动。沿一条直线运动这一条件不可少,因为物体尽管加速度不变,但还可能沿曲线运动。例如我们在模块“物理2”中将要讨论的平抛运动,就是一种匀变速曲线运动。加速度不变,即速度是均匀变化的,运动物体在任意相等的时间内速度的变化都相等。因此,匀变速直线运动的定义还可以表述为:物体在一条直线上运动,如果在任意相等的时间内速度的变化量都相等,这种运动就叫做匀变速直线运动。展示以下两个v-t图象,请同学们观察,并比较这两个v-t图象。学生回答v-t图线与纵坐标的交点表示t=0时刻的速度,即初速度v0。v-t图线的斜率在数值上等于速度v的变化量∆v与时间t的变化量∆t之比,表示速度的变化量与所用时间的比值,即加速度。由作图可得甲乙两个v-t图象表示的运动都是匀变速直线运动,但甲图的速度随时间均匀增加,乙图的速度随着时间均匀减小。知识总结:在匀变速直线运动中,如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动;如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。(2)速度与时间的关系式提问:除用图象表示物体运动的速度与时间的关系外,是否还可以用公式表达物体运动的速度与时间的关系?教师引导,取t=0时为初状态,速度为初速度V0,取t时刻为末状态,速度为末速度V,从初态到末态,时间的变化量为∆t,则∆t=t—0,速度的变化量为∆V,则∆V=V—V0学生回答:因为加速度a=tv,所以∆V=a∆tV—V0=a∆tV—V0=atV=V0+at知识总结:匀变速直线运动中,速度与时间的关系式是V=V0+at匀变速直线运动的速度与时间关系的公式:V=V0+at的理解:由于加速度a在数值上等于单位时间内速度的变化量,所以at是从0—t这段时间内速度的变化量;再加上运动开始时物体的速度V0,就得到t时刻物体的速度V。公式说明,t时刻的速度v与初速度v0、加速度a和时间t有关。让学生明白该公式不仅可以应用在匀加速直线运动中,也可以应用在匀减速运动中对于匀加速直线运动,若取V0方向为坐标轴的正方向(V00),a等于单位时间内速度的增加量,at是从0—t这段时间内速度的增加量;t时刻物体的速度V等于初速V0加上at。即V=V0+at,这说明:对匀加速直线运动,初速V00时,加速度a0对于匀减速直线运动,若取V0方向为坐标轴的正方向(V00),a等于单位时间内速度的减少量,at是从0—t这段时间内速度的减少量;t时刻物体的速度V等于初速V0减去at。即V=V0+(-at),这说明:对匀加速直线运动,初速V00时,加速度a0,在利用公式V=V0+at解题代入数据时加速度a应为负值。3.教材中两道例题的分析应用公式V=V0+at,此公式用在两种类型中:匀加速直线运动和匀减速运动。教材中的例题1,研究的是汽车的加速过程,已知汽车的初速度v0、加速度a和加速的时间t,需求末速度v,如图2-13所示。此题只需直接应用匀变速直线运动的速度公式即可求解。教材中的例题2,研究的是汽车的紧急刹车过程,已知汽车的加vto甲vto乙vtoV0Vt∆V∆tv0v=?a图2-13tv=0v0=?at图2-14速度a的大小和刹车减速的时间t,并有隐含条件末速度v=0,需求初速度v0,如图2-14所示。此题在应用匀变速直线运动的速度公式求解时,若以汽车运动的方向为正方向,则加速度须以负值代入公式。求解这两道例题之后,可以总结一下,解答此类问题的一般步骤是:认真审题,弄清题意;分析已知量和待求量,画示意图;用速度公式建立方程解题;代入数据,计算出结果。补充:1.匀加速直线运动的再认识(复习)2.关系式vv中时再认识在第一节探究小车速度随时间变化规律的实验中,我们已经用到了“匀变速直线运动某段时间内的平均速度,就等于这段时间中间时刻的瞬时速度”这一规律。你想过没有,为什么有这种等量关系呢?让我们来证明一下。设物体做匀变速直线运动的初速度为v0,加速度为a,经时间t后末速度为v,并以中时v表示这段时间中间时刻的瞬时速度。由atvv0,20tavv中时,可得20vvv中时。因为匀变速直线运动的速度随时间是均匀变化的,所以它在时间t内的平均速度v,就等于时间t内的初速度v0和末速度v的平均值,即20vvv。从而,可得vv中时。3.于初速度为0的匀加速直线运动因v0=0,由公式atvv0可得atv,这就是初速度为0的匀加速直线运动的速度公式。因加速度a为定值,由atv可得tv。所以,在物体做初速度为0的匀加速直线运动时,物体在时刻t、2t、3t、……nt的速度之比v1︰v2︰v3︰……︰vn=1︰2︰3︰……︰n。4.对“说一说”问题的讨论本节教材在“说一说”栏目中给出了一个物体运动的速度图象,图象是一条斜向上延伸的曲线。从图象可以看出,物体的速度在不断增大。在相等的时间间隔△t内,速度的变化量△v并不相等,而是随着时间的推移在不断增大。所以,物体的加速度在不断增大,物体做的并不是匀加速运动,而是加速度逐渐增大的变加速运动。请进一步思考:匀变速直线运动速度图象直线的斜率表示加速度,那么从变加速直线运动的速度图象,又如何求出某段时间内的平均加速度和某一时刻的瞬时加速度呢?由教材图2.2-5不难看出,变加速直线运动速度图象曲线的割线的斜率,表示相应时间段内的平均加速度;曲线的切线的斜率,表示相应时刻的瞬时加速度。

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功