-1-ACQBP1、已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:(1)当t为何值时,△PBQ是直角三角形?(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;2、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.CDM-2-(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.3、如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA∥BC,CBAED图1NMACBEDNM图3-3-D是BC上一点,BD=41OA=2,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.(1)直接写出....D点的坐标;(2)设OE=x,AF=y,当y与x相等时,求E点坐标;(3)当△AEF是等腰三角形时,将△AEF沿EF折叠,得到△EFA,求△EFA与五边形OEFBC重叠部分的面积.-4-4、如图,在平面直角坐标系xOy中,已知直线AC的解析式为122yx,直线AC交x轴于点C,交y轴于点A.(1)若一个等腰直角三角形OBD的顶点D与点C重合,直角顶点B在第一象限内,请直接写出点B的坐标;(2)过点B作x轴的垂线l,在l上是否存在一点P,使得△AOP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)试在直线AC上求出到两坐标轴距离相等的所有点的坐标.xAyC(D)BO-5-5、如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,动点P(x,0)在OB上运动(0x3),过点P作直线m与x轴垂直.(1)求点C的坐标,并回答当x取何值时y1y2?(2)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.(3)当x为何值时,直线m平分△COB的面积?-6-6、边长为4,将此正方形置于平面直角坐标系中,使AB边落在x轴的正半轴上,且A点的坐标是(1,0)。①直线3834xy经过点C,且与x轴交与点E,求四边形AECD的面积;②若直线l经过点E且将正方形ABCD分成面积相等的两部分求直线l的解析式,③若直线1l经过点F0.23且与直线y=3x平行,将②中直线l沿着y轴向上平移1个单位交x轴于点M,交直线1l于点N,求NMF的面积.