[本课知识要点]通过具体问题引入二次函数的概念,在解决问题的过程中体会二次函数的意义.[创新思维](1)正方形边长为a(cm),它的面积s(cm2)是多少?s=a2(2)矩形的长是4厘米,宽是3厘米,如果将其长与宽都增加x厘米,则面积增加y平方厘米,试写出y与x的关系式.y=(4+x)(3+x)−4×3=x2+7x请观察上面列出的两个式子,它们是不是函数?为什么?如果是函数,请你结合学习一次函数概念的经验,给它下个定义.二次函数的概念:形如ax2+bx+c=0(a≠0,a、b、c为常数)的函数叫二次函数.[实践与探索]例题:补充例题:1.m取哪些值时,函数是以x为自变量的二次函数?分析若函数是二次函数,须满足的条件是:.解若函数是二次函数,则.解得,且.因此,当,且时,函数是二次函数.回顾与反思形如的函数只有在的条件下才是二次函数.探索若函数是以x为自变量的一次函数,则m取哪些值?2.写出下列各函数关系,并判断它们是什么类型的函数.(1)写出正方体的表面积S(cm2)与正方体棱长a(cm)之间的函数关系;(2)写出圆的面积y(cm2)与它的周长x(cm)之间的函数关系;(3)某种储蓄的年利率是1.98%,存入10000元本金,若不计利息,求本息和y(元)与所存年数x之间的函数关系;(4)菱形的两条对角线的和为26cm,求菱形的面积S(cm2)与一对角线长x(cm)之间的函数关系.解(1)由题意,得,其中S是a的二次函数;(2)由题意,得,其中y是x的二次函数;(3)由题意,得(x≥0且是正整数),其中y是x的一次函数;(4)由题意,得,其中S是x的二次函数.3.正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S(cm2)与小正方形边长x(cm)之间的函数关系式;(2)当小正方形边长为3cm时,求盒子的表面积.解(1);(2)当x=3cm时,(cm2).[当堂课内练习]1.下列函数中,哪些是二次函数?(1)(2)(3)(4)2.当k为何值时,函数为二次函数?3.已知正方形的面积为,周长为x(cm).(1)请写出y与x的函数关系式;(2)判断y是否为x的二次函数.[本课课外作业]A组1.已知函数是二次函数,求m的值.2.已知二次函数,当x=3时,y=-5,当x=-5时,求y的值.3.已知一个圆柱的高为27,底面半径为x,求圆柱的体积y与x的函数关系式.若圆柱的底面半径x为3,求此时的y.4.用一根长为40cm的铁丝围成一个半径为r的扇形,求扇形的面积y与它的半径x之间的函数关系式.这个函数是二次函数吗?请写出半径r的取值范围.B组5.对于任意实数m,下列函数一定是二次函数的是()A.B.C.D.6.下列函数关系中,可以看作二次函数()模型的是()A.在一定的距离内汽车的行驶速度与行驶时间的关系B.我国人口年自然增长率为1%,这样我国人口总数随年份的变化关系C.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)圆的周长与圆的半径之间的关系