分析总结船舶与海洋结构优化设计方法【摘要】:船舶结构设计对船舶的应用性有着很大的意义。船舶结构设计的优化方法主要有经典优化设计的数学规划法、多目标模糊优化设计法、基于可靠性的优化设计法、智能型优化设计法等。在进行具体的船舶结构优化设计时,必须要与实际工程的特点相符合,同时结合计算机技术、现代数学理论等。本文主要介绍了船舶结构优化设计的几种方法,及其在实现船舶结构的优化、实现船舶的性能最大化中的优缺点。在船舶结构直接计算中,外载荷(包括波浪压力、砰击载荷、货物压力、晃荡载荷、波浪弯矩、剪力和扭矩等)的计算都依赖于经验公式,不管是采用全船的计算模型还是采用舱段的计算模型,目前情况下很难得到一个完全平衡的外载荷力系。由于船舶结构是一个复杂的空间结构,直接计算时,有限元模型中节点数、单元数十分庞大,载荷计算的累计误差使得寻求一个完全平衡的外载荷力系的工作更加困难。在这种情况下,施加合理、合适的边界条件变得十分重要,因为约束点产生的很大的反力严重地影响(改变)了结构的实际受力状态。边界条件对于计算的结果有重大的影响,而边界条件的确定取决于对结构受力和变形状态的判断以及分析者的经验,其中人为的因素较多。也许可以认为根据StVenant原理,由于约束点距离我们最关心的部位较远,对应力分布的计算结果的影响有限,但是这样得到的结果毕竟是不甚合理的。因此用有限元方法计算船舶结构强度时,为了得到比较准确的变形和应力结果,可能需要特殊的处理方法。目前的研究中有采用惯性释放的方法,此方法用结构的惯性力来平衡外力,由于人为的施加外载荷,虽然在大多数情况下,都经过了节点力的调整,但作用在船体的力系仍然不是平衡力系,根据达朗贝尔原理,利用惯性力使整个力系达到平衡。也有研究整船有限元模型自动加载技术的,这些研究都需要经过节点力的调整和惯性平衡力计算的多次叠代,对船舶要进行浮态调整,实现起来,比较繁琐。进行船舶结构优化设计的目的就是寻求合适的结构形式和最佳的构件尺寸,既保证船体结构的强度、稳定性、频率和刚度等一般条件,又保证其具有很好的力学性能、经济性能、使用性能和工艺性能。随着计算机信息技术的发展,在计算机分析与模拟基础上建立的船舶结构的优化设计,借鉴了相关的工程学科的基本规律,而且取得了卓越的成效;基于可靠性的优化设计方法也取得了较大的进步;建立在人工智能原理与专家系统技术基础上的智能型结构设计方法也取得了突破性进展。1经典优化设计的数学规划方法结构优化设计数学规划方法于1960年由L.A.Schmit率先提出。他认为在进行结构设计时应当把给定条件的结构尺寸的优化设计问题转变成目标函数求极值的数学问题。这一方法很快得到了其他专家的认可。1966年,D.Kavlie与J.Moe等首次将数学规划法应用于船舶的结构设计,翻开了船舶结构设计的新篇章。我国的船舶结构的设计方法研究工作始于70年代末,已研究出水面船舶和潜艇在中剖面、框架、板架和圆柱形耐压壳等基本结构的优化设计方法。由于船舶结构是非常复杂的板梁组合结构,在受力和使用的要求上也很高,所以在进行船舶结构的优化设计时,会涉及到许多设计变量与约束条件,工作内容很多,十分困难。船舶结构的分级优化设计法就是在这个基础上产生的,其基本思路是最优配置第一级的整个材料,优选第二级的具体结构的尺寸。每一级又可以根据具体情况划分成若干个子级。两级最后通过协调变量迭代,将整个优化问题回归到原问题。分级优化方法成功地解决了进行船舶优化设计中的剖面结构、船舶框架和板架、潜艇耐压壳体等一系列基本问题。2多目标的模糊优化设计法经典优化设计的数学规划方法是在确定性条件下进行的,也就是说目标函数与约束条件是人为的或者按某种规定提出的,是个确定值。而实际上,在船舶结构的优化设计过程、约束条件、评价指标等各方面都包含着许多的模糊因素,想要实现模糊因素优化问题,就必须依赖于模糊数学来实现多目标的优化设计。模糊优化设计方法大大的增加了设计者在选择优化方案时的可能性,让设计者对设计方案的形态有了更深入的了解。目前,模糊优化设计法发展很快,但是,还未实现完全实用化。多目标的模糊优化设计法的难点主要在于如何针对具体设计对象,正确描述目标函数的满意度与约束函数满足度隶属函数的问题。3基于可靠性的优化设计方法概率论与数理统计方法首先在40年代后期由原苏联引入到结构设计中,产生了安全度理论。这种理论以材料匀质系数、超载系数、工作条件系数来分析考虑材料、载荷及环境等随机性因素。早在50年代,人们就在船舶结构的优化设计中指出了可靠性概念,随后,船舶设计的可靠性受到人们的重视,开始研究可靠性设计方法在船舶结构建造中的应用。船舶结构可靠性的理论和方法根据设计目标的不同要求,可以得出不同的结构可靠性的优化设计准则。大体分为以下3种:1)根据结构的可靠性R·,要求结构的重量W最轻,即:MinW(X),s.t.R≧R·2)根据结构最大承重量W·,要求结构最大可靠性或者破损概率最小,即:MinPf(X),s.t.W(X)≦W·3)兼顾结构重量和可靠性或破损概率,实现某种组合满意度达到最大,即:Max[a1uw(X)+a2upf(X)]式中,a1,a2分别代表结构重量和破损概率的重要度程度,而且满足a1+a2≥1.0,a1,a2≥0;uw,upf分别为代表相应的满意度。关于船舶结构的可靠性优化设计方法的研究越来越多,逐渐成为船舶的结构优化设计中的重要方向。但是,可靠性的优化设计方法除了在大规模的随机性非线性规划求解中存在困难外,还有一个重要的难点在于评估船舶结构可靠性的过程很复杂,而且计算量大。4智能型的优化设计方法随着人工智能技术(Al)和计算机信息技术的发展,给船舶结构的优化设计提供了一个新的途径,也就是智能型优化设计法。智能型的优化设计法的基本做法为:搜索优秀的相关产品资料,通过整理,概括成典型模式,再进行关联分析、类比分析和敏度分析寻找设计对象和样本模式间的相似度、差异性与设计变量敏度等,按某种准则实施的样本模式进行变换,进而产生若干符合设计要求的新模式,经过综合评估与经典优化方法的调参和优选,最终取得最优方案。智能型的优化设计法法的优点是创造性较强,缺点是可靠性较弱。所以在分析计算其产生的各种性能指标时,应当进行多目标的模糊评估,必要时还应当使用经典优化方法对某些参数进行调整。本文基于优化设计的思想,提出了一种应用ANSYS优化设计分析功能进行船舶浮态的自动调整及加载的方法,使得施加在有限元模型的整个外载荷几近于平衡力系,约束点的支反力接近于零,通过算例证明了该方法的可行性。ANSYS优化设计理论及其应用于船舶浮态自动调整及加载。ANSYS优化设计分为目标优化设计和拓扑优化设计两种。目标优化设计是一种通过迭代试算以确定最优化设计方案的技术。所谓“最优设计”,指的是该种方案可以满足所有的设计要求(如应力低于许用应力,长度小于临界长度),而且目标量的支出(如重量、面积和费用等)最小。一般来说,设计方案的许多方面都可以优化,如尺寸、形状、制造费用、自然频率等。所有可以参数化的ANSYS选项几乎都可以做优化设计。ANSYS优化设计实际就是程序提供了一系列的分析―评估―修正的循环过程,这一循环过程重复进行直到所有的设计要求都满足为止。ANSYS优化模块中的三大变量是设计变量、状态变量和目标函数,设计变量为自变量,优化结果的取得就是通过改变设计变量的数值来实现的,而实际上设计变量就是需要真正的进行设计的变量。状态变量是约束设计的数值,为因变量,是设计变量的函数。目标函数即为最后用以评估设计是否最优设计的量,一般来说是要尽量减小的量,它必须是设计变量的函数,也就是说目标函数的数值也必须随着设计变量的改变而改变。本文的思路是基于ANSYS优化设计理论,我们将船舶首尾吃水定义为设计变量,也就是说将船舶模型的舷外水压力载荷作为我们设计的变量,再将单元的应力定义为状态变量,约束点处的支反力定义为目标函数,通过优化迭代设计,ANSYS优化设计程序将通过迭代试算自动寻找到船舶合理的也就是实际的吃水状态,使得目标函数值即约束支反力的大小接近于零,此时整个外载荷几近于平衡力系,得到的设计变量的解最接近船舶实际的吃水及浮态,这个解也就是我们所要寻找的最优解,寻找到最优解的这次迭代实际上也完成了船舶有限元模型合理的加载与计算。整个优化程序设计的主要步骤为:(1)用命令流参数化建立船舶有限元模型,船舶的吃水等设计变量用参数化的形式输入,并指定初始值,为了提取必要的状态变量以及目标函数,需要进行一次求解且用命令流提取并指定状态变量和目标函数,将船舶的吃水指定为设计变量,单元的应力指定为状态变量,约束处的支反力定义为目标函数,然后生成循环所用的分析文件,该文件包括整个分析的过程;(2)进行优化分析的设置,进入OPT,指定分析文件,声明优化变量,选择优化工具和优化方法,指定优化循环控制方式等。(3)运行优化程序,进行优化分析并查看设计序列结果和后处理。【结论】:通过本文对船舶结构优化设计方法的研究,我们得出在进行船舶结构优化设计的时候,往往会涉及到很多相互制约和互相影响的因素,这就需要设计人员权衡利弊,进行综合考察,不但要进行结构参数与结构型式的优选,而且还要针对具体情况对做出的方案进行评估、优选和排序。通过什么准则对不同的方案进行综合评估,得出最优方案,成为专家和设计人员需要继续研究的问题。