2020/1/5/301第六章系统结构模型法(ISM法)2020/1/5/302假设P={P1,P2,……PN}是一个系统,Pi是组成系统的系统事物要素。其中任意一个Pi,至少与P中其他一个Pj存在因果关系。P的其具体含义为,所有与某个事物要素(比如,初始问题)相关的事物要素的集合。某些事物要素之间具有“两两因果关系”,使得整体系统P构成了一个具有“错综复杂”关系的系统。从系统的整体结构关系来看,我们”希望弄清楚该系统直观的、整体的层次结构关系(一个愿幻)”因此,我们从这个愿幻对该系统提出的问题,以及从问题导出的问题导出目标可以描述为:2020/1/5/303问题阐明判断:是,这终止阐明,并对问题标*;否则,直至阐明问题。T(2):采用ISM法(图论方法)确定系统P直观的、整体层次结构关系。Q(2):(由P的要素两两之间的因果关系引起的)系统P直观的整体层次结构关系问题*T(1):聘请专家确定与Pi相关的系统P的要素,并判断P的要素两两之间的因果关系,采用邻接矩阵表达之。Q(1):确定与Pi相关的整体系统P的要素,以及确定两两之间的因果关系问题*T(0)(1):确定系统P直观的、整体层次结构关系?Q(0)(1):(初始问题)系统P直观的、整体层次结构关系问题。问题导出目标(T)问题(Q)2020/1/5/304注:解决问题等价目标T(1)与解决问题等价目标T(2)之间,实际上存在“隶属”关系。这种关系在问题-目标列表中无法表达出来。我们用问题-目标树图表示如下:2020/1/5/305问题-目标树:初始问题-目标Q(0)(1):系统P直观的整体层次结构关系问题Q(1):P的要素两两之间的因果关系问题T(0)(1):确定系统P直观的整体层次结构关系第一层子问题-子目标T(1):聘请专家判断P的要素两两之间的因果关系,并采用邻接矩阵表达之。阐明问题?停止是Q(2):(由P的要素两两之间的因果关系引起的)系统P直观的整体层次结构关系问题T(1):采用ISM法(图论方法)确定系统P直观的整体层次结构关系。阐明问题?停止是存在一种隶属关系否停止阐明问题?是**2020/1/5/306单纯目标树:问题导出目标T(0):确定系统P直观的整体层次结构关系T(1):由专家来判断P的要素两两之间的因果关系T(2):采用ISM法来确定P直观的整体层次结构关系第1层次子目标存在一种隶属关系2020/1/5/307一个系统的要素之间的关系常常“错综复杂”,而更为严重的是,即使在知道两两之间存在因果关系,但这种关系往往缺乏“整体上”的直观性。我们通常希望一个系统具有整体上的层次结构,这样就有利于我们进一步去研究这些系统要素之间的关系。2020/1/5/308比如:在控制人口总量的问题中,通过专家的研究,大约有下列(见下表)因素与“人口总量”因素相关——即会影响人口总数的变化(增长或减少,或持平)。其中,有些因素是个人因素、有些是家庭因素、有些国家政策因素、有些是统计因素。下表列出了影响人口总量的所有影响因素,这些因素放在一起,形成了一个系统P,我们简称这个系统为“人口总量系统”。2020/1/5/309因素序号“人口总量系统”因素名称1期望寿命(平均寿命)2医疗保健3生育能力4计划生育政策5思想、风俗习惯6社会保障(养老)7污染程度8国民收入(生活水准)9食物营养10人口培养成本11出生率12死亡率13人口总量1、对人口总量系统提出的初始问题为“有效控制人口总量问题”将每一个因素后面加“问题”二字,则都是子问题怎样才能有效控制人口数量呢?2、希望知道影响人口总量变化的因素之间的交互影响关系?——愿幻!3、T(1):找出影响因素之间直观的、整体层次结构关系(动词+指标预想结果),T(2):为控制人口总量提供最有效的控制要素(更高的目标)。2020/1/5/3010一方面,这些因素都可能影响人口总量的变化;另一方面,如果不清楚系统要素之间直观的、整体层次结构,则可能无法判断选择的控制因素是否有效(即无法找到关键因素)。因此,系统直观的、整体层次结构问题,是有效控制人口总量问题的一个下级子问题。同时,只有实现了目标T(1),才有可能实现目标T(2)。更进一步的说,只有实现了T(1),才可能进一步研究系统要素之间的其他关系(比如:量化关系、因果影响关系的强度、其它等关系等),直至实现目标T(2)。2020/1/5/3011系统(整体)结构模型法(ISM法)的假定:(1)一个系统中每一要素至少与系统中的一个其他要素有因果关系。(2)所有两两因素之间,要么存在因果关系,要么没有因果关系(也可以假定是其他关系,比如大小、优劣等关系);然后,利用的数学中图论方法,通过运算,将系统因素整理出具有层次的、在因果关系下的系统直观的、整体层次结构图。2020/1/5/3012ISM法除了针对系统要素之间的因果关系,以及在因果关系下可以获得系统直观的、整体层次结构关系外,ISM法本身并不研究系统要素之间的的其他关系。但是,其所获得的具有因果关系的、直观的系统整体层次结构图,为进一步研究因素(子问题等)之间的关系(数量的\非数量的等关系)提供了系统直观的、整体层次结构依据。因此,系统结构模型我们也称为是“宏观解释结构模型”(ISM法)。2020/1/5/3013在社会经济系统,甚至是大型工程项目的研究中,ISM法是研究因素(子问题)之间宏观结构关系的一种非常重要、有效的研究方法。为了能够获得直观的、系统整体层次结构图,我们首先需要了解ISM法的工作原理。2020/1/5/3014§1建立系统整体层次结构模型的基本原理一、有向连接图、回路与环1、有向连接图假设有一个n元素所组成的系统,其元素(因素、或要素)用节点Pi表示,元素之间的关系(这里我们仅假定为是因果关系)用带箭头的边表示,则该系统可以构成一有向连接图,如下:2020/1/5/3015P1P2P3P4P5P6P7在实际生活中,我们通常能够对两个(相邻)要素之间是否有直接的因果关系作出判断,但关系较远时(比如,间接因果关系)就难于判断了(或无法肯定地判断)。比如:胡蝶效应——北京的一只糊蝶煽了一下翅膀,引起了纽约的一场暴风雪——就很难说是否有因果关系,是否有直接关系?还是有间接关系?都无法判断!这时,假设判断结果为“无因果关系”。用这些带箭头的线条表示“因果关系”2020/1/5/30162、回路3、环具有一条有向线段连接自身的元素。是回路在只有一个元素时的特殊情况。两个以上元素之间具有有向线段首尾相连的有向连接图。如图:P1P2P4P3P1P2P3P72020/1/5/3017二、邻接矩阵与可达矩阵1、邻接矩阵设有n个元素构成的一个系统P={P1,P1,…Pn},定义邻接矩阵A为:aij=1有元素Pi指向Pj的箭头0否则从图论可知:有向连接图邻接矩阵1-1对应2020/1/5/3018例23:写出上图的邻接矩阵A=P2P3P4P5P6P7P10000000P2P3P4P5P6P7P1100000000010000000110000000001000000001000P1P2P3P4P5P6P7注1:这时候,由于矩阵的对角线没有1,因此,每个元素没有“环”。注2:如果已经知道了这个邻接矩阵,则我们也可以画出有向连接图2020/1/5/3019邻接矩阵的特性:(相对整个系统而言)(1)汇点(输出):全0的行所对应的点(比如P1)。(2)源点(输入):全0的列所对应的点(比如P7)。(3)发点:矩阵中1对应行的点(比如,P2、P4等)(4)收点:矩阵中1对应列的点(比如P1、P4等)。在前面的问题树或目标树中,最下级的问题或目标就是输入的“源点”,最上级的问题或目标就是输出的“汇点”。P2P3P4P5P6P7P10000000P2P3P4P5P6P7P1100000000010000000110000000001000000001000P1P2P3P4P5P6P72020/1/5/3020注:1、代表了两两要素之间因果关系的邻接矩阵是求出系统整体层次结构(模型)的基础,即ISM法的基础。2、人们在两个要素之间判断其是否存在“因果关系”是相对比较容易的(即使是判断错误,也是相对容易判断的),但当多个要素放在一起比较时就困难、非常困难了。因此,ISM法是将困难的多因素之间关系的判断,转化成了要素两两之间比较其“因果关系”的判断,然后,再运用数学的方法来获得系统直观的、整体层次结构(模型)的方法。2020/1/5/3021例:求构成人口总量系统要素的邻接矩阵为了有效地控制人口总量,需要知道人口总量系统中所有要素之间直观的、系统整体层次结构关系,通过控制其中某些关键(或重要)要素来达到对人口总量的控制。然而,我们通过直观判断,根本无法获得人口总量系统的、各要素之间的整体层次结构关系。但是,对其两两要素之间是否存在因果关系,我们通常是可以进行判断的。为此,为获得由两两要素之间因果关系决定的邻接矩阵A的元素的取值,我们使用下列判断准则,对两两要素之间的因果关系进行取值:2020/1/5/3022如果两个因素(子问题)之间存在“明显”的(大多数专家认为即可)因果关系,则取“1”,否则,取“0”;自己对自己的影响取“0”。注:“明显”的、大多数专家认为存在因果关系,是指只有一种因果关系,即只能是单值,而不是多值的!否则(有可能有,有可能没有因果关系时),则表明没有“明显”的因果关系。通过专家的判断,与“控制人口总量问题”对应的人口总量系统的、两两要素之间的邻接矩阵如下:A=2020/1/5/3023人口总量系统中各要素的邻接关系(因果关系)矩阵:0000000000010100000000001000000000010000000000110101100000000001010110100001000001P1(期望寿命)P2(医疗保健)P3(生育能力)P4(计生政策)P5(思想风俗)P6(保障养老)P7(污染程度)P8(国民收入)P9(食物营养)P10(培养成本)P11(出生率)P12(死亡率)P13(人口总量)10P1P2P3P4P5P6P7P8P9P10P11P12P130000000010010101000000001100000000000000000001000000000000100000000000010000000000000期望寿命长并不一定导致人口总数增长!比如,西方发达国家的医疗保健水平很高,但人口却负增长比如,西方发达国家的保障养老水平很高,但人口却负增长人口总数对其它因素的影响是间接的(统计变量因素)。由于邻接矩阵与有向连接图1-1对应,因此,由这个邻接矩阵,我们可以画出有向连接图,但这时画出的有向连接图可能是没有直观层次结构的。2020/1/5/30242、可达矩阵(1)布尔代数运算法则加法准则:“+”的定义为两个数取大。即0+1=0∨1=1=1∨0=1+0因此:A.0+1=1+0=1(取大,0+1=0∨1=1)B.1+1=1(取大,1+1=1∨1=1)乘法准则:“×”的定义,两个数取小。即1×1=1∧1=1因此:C.1×1=1D.1×0=0×1=02020/1/5/30252、可达矩阵(2)r步可达矩阵称A1=A+I为1步可达矩阵,其中I为单位矩阵,1步可达包括了“自己可达自己”的环。以例23为例,A如下所示:P2P3P4P5P6P7P10000000P2P3P4P5P6P7P1100000000010000000110000000001000000001000A=2020/1/5/30261步可达矩阵则,A1=A+IP2P3P4P5P6P7P2P3P4P5P6P7P10000000P11000000000100000001100000000010000000010001000000010000000100000001000000010000000010000010+注意