mia分式方程一:教学目标1、掌握分式方程的概念;2、理解分式方程的解题思路;初步掌握解分式方程的一般步骤;3、了解分式方程产生增根的原因及掌握验根的方法;4、根据实际问题列分式方程。二:教学重难点重点:1、会解可化为一元一次方程的分式方程,会检验根的合理性;2、会根据实际问题列分式方程并求解验证。难点:理解解分式方程时可能无解的原因;根据实际问题列分式方程。三:基础知识1、分式方程定义:分母中含有___________的方程。例:方程x+13(x+1)=16是不是分式方程?2、解分式方程的一般步骤:1)、在方程的两边都乘以__________________,约去分母,化成____________2)、解这个整式方程.3)、把整式方程的解代入最简公分母,如果______________,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解,必须舍去.4)、写出原方程的根.例:解方程11x=221x方程两边同乘以最简公分母_____________,化简,得______________解得______________检验:把x=_____,代入最简公分母,___________0∴原分式方程_____________________增根:在去分母,将分式方程转化为整式方程的过程中出现的不适合于原方程的根.(使分母值为零的根)例:方程2515xxm有增根,求m的值。mia3、分式方程实际应用列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答.(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.(2)数字问题在数字问题中要掌握十进制数的表示法.(3)工程问题基本公式:工作量=工时×工效.(4)顺水逆水问题v顺水=v静水+v水.v逆水=v静水-v水.(5)利润问题利润=售价-成本(进价)四:典型例题考点一:分式方程的概念例1判断下列方程是否为分式方程(1)(2)(3)(4)(5)(6)(7)(8)练习:下列不是分式方程的是()A、13xxB、1111xxxC、243yxD、xx3221考点二:分式方程的增根例2、如果有增根,那么增根为x=()例3、解关于x的方程产生增根,则常数m=()例4、若关于x的方程无解,则a=()练习:若分式方程)2)(1(111xxmx有增根,则m=()A、0和3B、1C、1和-2D、32(1)23xx437xy(1)(4)1xxx3(3)2xx2131xxx215xx)(105126xx)(13(2)2xx113xmxx131xxaxxx21321mia2311xx2xx--51144xxx考点三:解分式方程例5、(1)(4)例6、解方程:xxxx4334324432练习:(1)(2)先化简代数式再求值:12)113(2xxxxx,其中x满足方程111xxx。13321)2(xxxx01522xxxx1412)3(2xxmia考点四:实际问题转化为分式方程工程问题例7、某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的32,厂家需付甲、丙两队共5500元.⑴求甲、乙、丙各队单独完成全部工程各需多少天?⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由。练习:一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?行程问题:例9、甲、乙两地相距828km,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h,比普通快车早4h到达乙地,求两车的平均速度.例10、轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度。mia练习:从2011年5月起某列列车平均提速5千米/时。用相同的时间,列车提速前行驶1200千米,提速后比提速前多行驶50千米,提速前列车的平均速度是多少?经济问题:例11、某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料0.5kg少3元,比乙种原料0.5kg多1元,问混合后的单价0.5kg是多少元?例12、某市从今年1月1日起调整居民用水价格,每立方水费上涨1/3,小利家去年12月的水费是15元,而今年7月份的水费则是30元,已知小利家今年7月的用水量比去年12月份的用水量多5立方米,求该市今年居民的用水的价格。五、课后练习1、若分式方程424xaxx有增根,则a的值为()A、4B、2C、1D、02、解方程22162242xxxxxmia3、两个工程队共同参加一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成。哪个队的施工速度快?4.甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.4、在实施“中小学生蛋奶工程”中,某配送公司按上级要求,每周向学校配送鸡蛋10000个,鸡蛋用甲、乙两种不同规格的包装箱进行包装,若单独使用甲型包装箱比单独使用乙型包装箱可少用10个,每个甲型包装箱比每个乙型包装箱可多装50个鸡蛋,设每个甲型包装箱可装x个鸡蛋,根据题意列方程,不求解。5、小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意列方程,不求解。