全国大学生数学建模竞赛优秀奖

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

全国大学生数学建模竞赛全国大学生数学建模竞赛第1页共34页2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。我们参赛选择的题号是(从A/B/C/D中选择一项填写):B我们的报名参赛队号为(8位数字组成的编号):所属学校(请填写完整的全名):参赛队员(打印并签名):1.2.3.全国大学生数学建模竞赛全国大学生数学建模竞赛第2页共34页指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。)日期:2014年9月15日赛区评阅编号(由赛区组委会评阅前进行编号):全国大学生数学建模竞赛全国大学生数学建模竞赛第3页共34页2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):全国大学生数学建模竞赛第4页共34页创意平板折叠桌摘要目前住宅空间的紧张导致越来越多的折叠家具的出现。某公司设计制作了一款折叠桌以满足市场需要。以此折叠桌为背景提出了三个问题,本文运用几何知识、非线性约束优化模型等方法成功解决了这三个问题,得到了折叠桌动态过程的描述方程以及在给定条件下怎样选择最优设计加工参数,并针对任意形状的桌面边缘线等给出了我们的设计。针对问题一,根据木板尺寸、木条宽度,首先确定木条根数为19根,接着,根据桌子是前后左右对称的结构,我们只以桌子的四分之一为研究对象,运用空间几何的相关知识关系,推导并建立了几何模型。接着用MATLAB软件编程,绘制出折叠桌动态变化过程图。然后求出折叠桌各木条相对桌面的角度、各木条长度、各木条的开槽长度等数据,相关结果见表1。然后建立相应的三维坐标系,求出桌角各端点坐标,绘出桌角边缘线曲线图,并用MATLAB工具箱作拟合,求出桌角边缘线的函数关系式,并对拟合效果做分析(见表3)。针对问题二,在折叠桌高度、桌面直径已知情况下,综合考虑桌子稳固性、加工方便、用材最少三个方面因素,我们运用材料力学等相关知识,对折叠桌作受力分析,确定稳固性、加工方便、用材最少三个方面因素间的相互制约关系,建立非线性优化模型。用lingo软件编程,求出对于高70cm,桌面直径80cm的折叠桌,平板尺寸、钢筋位置在桌腿上距离铰链46.13cm处、各木条的开槽长度(见表3)、最长木条(桌脚)与水平面夹角。针对问题三,对任意给出的桌面边缘线(f(x)),不妨假定曲线是对称的(否则,桌子的稳定性难以保证),将对称轴上n等份,依照等份点沿着木板较长方向平行的方向全国大学生数学建模竞赛第5页共34页下料,则这些点即是铰接处到木板中垂线(相对于木板长方向)的距离。然后修改问题二建立的优化模型,用lingo软件编程,得到最优设计加工参数(平板尺寸、钢筋位置、开槽长度等)。最后,我们根据所建立的模型,设计了一个桌面边缘线为椭圆的折叠桌,并且给出了8个动态变化过程图(见图10)和其具体设计加工参数(见表5)。最后,对所建立的模型和求解方法的优缺点给出了客观的评价,并指出了改进的方法。关键字:折叠桌曲线拟合非线性优化模型受力分析全国大学生数学建模竞赛第6页共34页一、问题重述1.1引言创意平板折叠桌注重于表达木制品的优雅和设计师所想要强调的自动化与功能性。为了增大有效使用面积。设计师以长方形木板的宽为直径截取了一个圆形作为桌面,又将木板剩余的面积切割成了若干个长短不一的木条,每根木条的长度为平板宽到圆上一点的距离,分别用两根钢筋贯穿两侧的木条,使用者只需提起木板的两侧,便可以在重力的作用下达到自动升起的效果,相互对称的木条宛如下垂的桌布,精密的制作工艺配以质朴的木材,让这件工艺品看起来就像是工业革命时期的机器。1.2问题的提出围绕创意平板折叠桌的动态变化过程、设计加工参数,本文依次提出如下问题:(1)给定长方形平板尺寸(120cm×50cm×3cm),每根木条宽度(2.5cm),连接桌腿木条的钢筋的位置,折叠后桌子的高度(53cm)。要求建立模型描述此折叠桌的动态变化过程,并在此基础上给出此折叠桌的设计加工参数和桌脚边缘线的数学描述。(2)折叠桌的设计应做到产品稳固性好、加工方便、用材最少。对于任意给定的折叠桌高度和圆形桌面直径的设计要求,讨论长方形平板材料和折叠桌的最优设计加工参数,例如,平板尺寸、钢筋位置、开槽长度等。对于桌高70cm,桌面直径80cm的情形,确定最优设计加工参数。全国大学生数学建模竞赛第7页共34页(3)给出软件设计的数学模型,可以根据客户任意设定的折叠桌高度、桌面边缘线的形状大小和桌脚边缘线的大致形状,给出所需平板材料的形状尺寸和切实可行的最优设计加工参数,使得生产的折叠桌尽可能接近客户所期望的形状,并根据所建立的模型给出几个设计的创意平板折叠桌。要求给出相应的设计加工参数,画出至少8张动态变化过程的示意图。一、模型假设(1)忽略实际加工误差对设计的影响;(2)木条与圆桌面之间的交接处缝隙较小,可忽略;(3)钢筋强度足够大,不弯曲;(4)假设地面平整。三、符号说明符号意义D木条宽度(cm)缝宽L木板长度(cm)W木板宽度(cm)N第n根木条全国大学生数学建模竞赛第8页共34页T木条根数木板从外起第1个木条的长度(cm)木板从外起第n个木条的长度(cm)H桌子高度(cm)R桌子半径(cm)R桌子直径(cm)桌子厚度(cm)第n根木条到木板边沿的距离(cm)第n根木条顶点位置到圆面轴线径向距离(cm)第n根木条与水平面的夹角(度)第n根木条开槽长度(cm)四、问题分析4.1问题一分析题目要求建立模型描述折叠桌的动态变化图,由于在折叠时用力大小的不同,我们不能描述在某一时刻折叠桌的具体形态,但我们可以用每根木条的角度变化来描述折叠桌的动态变化。首先,我们知道折叠桌前后左右对称,我们可以运用几何知识求出四分之一木条的角度变化。最后,根据初始时刻和最终形态两种状态求出桌腿木条开槽的长度。4.2问题二分析全国大学生数学建模竞赛第9页共34页题目要求从折叠桌的稳固性好、加工方便、用材最少三个角度,确定设计加工参数。我们可以从应力、支撑面积考虑稳固性,从开槽长度考虑加工方便,从木板长度考虑用材最少。而它们之间又是相互制约,我们需要确定最优设计加工参数,可以建立非线性规划模型,用lingo软件来求解最优设计加工参数(平板尺寸、钢筋位置、开槽长度等),这里以合力的方向(斜向上)与最长木条(桌腿)的夹角方向最小为目标函数,以木条所承受应力小于木条的许用应力、支撑面积大于桌面面积、木条的开槽长度小于木条本身长为约束条件。4.3问题三分析题目要求制作软件的意思就是客户给定折叠桌高度、桌面边缘线的形状大小和桌脚边缘线的大致形状,将这些信息输入程序就得到客户想要的桌子。我们在求解最优设计加工参数时,自行给定桌面边缘线形状(椭圆、相交圆等),桌脚边缘线形状,折叠桌高度,应用第二问的非线性规划模型,用MATLAB软件绘制折叠桌截面图,得到自己设计的创意平板折叠桌。问题三流程图:已知f(x)、g(x)、h、w全国大学生数学建模竞赛第10页共34页五、模型建立和解决5.1问题一的模型建立和解决5.1.1模型的准备(1)符号说明为求出各木条角度关系,现引入下列符号::木板从外起第n个木条的长度(cm)d、N、全国大学生数学建模竞赛第11页共34页:第n个木条到木板边沿的距离:第n个木条与桌面铰接处到桌面轴线距离:第n个木条与第n-1个木条桌面铰接处到桌面轴线距离差:第n个木条与桌面的夹角(2)木条数的确定根据题目意思,长方形平板尺寸,宽50cm,每根木条宽2.5cm,知道木条数越多,桌子越不易松动,即稳固性更好,最大根数为根,考虑木条间的间隙和刀片的厚度,定为19根,此时,缝宽为:(3)模型近似从折叠桌实物可以看出,桌面并非为标准的圆面,圆面边上是锯齿形状,考虑到锯齿长度和圆半径的差异,我们假定圆为过木条中点的圆,在作示意简图和实际计算时,都以木条端点中点为木条与桌面接触点。另外,折叠桌以材料最省为设计原则,在木板尺寸一定情况下,应该做到桌面尽可能大,这里我们取木板宽度为桌面直径。5.1.2模型的建立为帮助理解,我们做折叠桌子两个最长脚(即在未折叠时的木板的同一侧最长木条)示意图,如图1所示:全国大学生数学建模竞赛第12页共34页图1折叠桌子两个最长脚截面图(其中A点为最长木条一端到水平面的距离,由于桌实际高度包括桌面厚度3cm,则A点到水平面距离要减去3cm)其中为57cm,因为木板厚度为3cm,有AD为两倍厚度,因为则知为57cm。记下面,我们作出平板俯视示意图,如下图2所示h-3A点B点C点D点E点第n根木条全国大学生数学建模竞赛第13页共34页图2平板俯视示意图对于第n个木条到木板边沿的距离,应该包括(n-1)条缝宽,(n-1)根木条长度以及它自身一半的长度,则有:从几何关系上,应用勾股定理可以得出:则第n个木条与第n-1个木条顶点位置到圆面轴线径向距离差:第n根木条长度:为了求解木条旋转角度,我们沿着钢筋的角度,作出折叠凳示意简图,如图3所第n-1根木条0.5(1)0.5(2)0.5(3)0.5(4)全国大学生数学建模竞赛第14页共34页示:图3折叠桌示意简图由上图知同理可得递推公式,即每根木条旋转角度:0.50.5h(5)全国大学生数学建模竞赛第15页共34页(由图3知,可能为负值,说明)开槽长度综合以上所分析,可建立如下几何模型:5.1.3模型的解决(1)动态变化过程动态变化过程:由于用力大小未知,折叠桌与时间的关系不能确定,我们只能确定桌子从平板到折叠完成后这一过程中,任一角度的桌角位置,(程序见附录problem1_3.m)例如当最长木条转过、、,通过程序可以得到各木条相对桌面旋转角度,如表1所示:表1最长木条转过、、时各木条转动角度0.5(6)0.5(7)全国大学生数学建模竞赛第16页共34页夹角为60°夹角为65°夹角为70°第1根606570第2根71.510676.821982.0272第3根79.72884.982890.063第4根85.97791.041495.8979第5根90.765395.6054100.2279第6根94.383599.0138103.1289第7根97.0267101.484105.7333第8根92.8285103.1591107.2893第9根99.8766104.1306108.1893(2)长槽长度、木条长度、旋转角度根据以上建立的模型,运用MATLAB软件,编程计算每根木条长度、旋转角度、长槽长度结果如下表2所示:表2木条长度、旋转角度、长槽长度第1根第2根第3根第4根第5根第6根第7根第8根第9根第10根111.1111.38旋转角度73.71985.83393.73799.39103.5438.76537.33836.28735.563106.59108.78110.2535.143514.79316.16417.12817.70217.892木条长度52.08946.6

1 / 34
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功