初一数学(下)应知应会的知识点二元一次方程组1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有唯一解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)注意:判断如何解简单是关键.※5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则“难列易解”;(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.一元一次不等式(组)1.不等式:用不等号“>”“<”“≤”“≥”“≠”,把两个代数式连接起来的式子叫不等式.2.不等式的基本性质:不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b>0或ax+b<0,(a≠0).5.一元一次不等式的解法:一元一次不等式的解法与解一元一次方程的解法类似,但一定要注意不等式性质3的应用;注意:在数轴上表示不等式的解集时,要注意空圈和实点.6.一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组;注意:ab>00ba0b0a或0b0a;ab<00ba0b0a或0b0a;ab=0a=0或b=0;mamaa=m.7.一元一次不等式组的解集与解法:所有这些一元一次不等式解集的公共部分,叫做这个一元一次不等式组的解集;解一元一次不等式时,应分别求出这个不等式组中各个不等式的解集,再利用数轴确定这个不等式组的解集.8.一元一次不等式组的解集的四种类型:设a>baxbxax是不等式组的解集bxbxax不等式的组解集是ababbxabxax不等式组的解集是是空集不等式组解集bxaxabab9.几个重要的判断:是正数、yx0xy0yx,是负数、yx0xy0yx,异号且正数绝对值大,、yx0xy0yx.yx0xy0yx异号且负数绝对值大、整式的乘除1.同底数幂的乘法:am·an=am+n,底数不变,指数相加.2.幂的乘方与积的乘方:(am)n=amn,底数不变,指数相乘;(ab)n=anbn,积的乘方等于各因式乘方的积.3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.4.单项式与多项式的乘法:m(a+b+c)=ma+mb+mc,用单项式去乘多项式的每一项,再把所得的积相加.5.多项式的乘法:(a+b)·(c+d)=ac+ad+bc+bd,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.6.乘法公式:(1)平方差公式:(a+b)(a-b)=a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;(2)完全平方公式:①(a+b)2=a2+2ab+b2,两个数和的平方,等于它们的平方和,加上它们的积的2倍;②(a-b)2=a2-2ab+b2,两个数差的平方,等于它们的平方和,减去它们的积的2倍;※③(a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.7.配方:(1)若二次三项式x2+px+q是完全平方式,则有关系式:q2p2;※(2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式,利用a(x-h)2+k①可以判断ax2+bx+c值的符号;②当x=h时,可求出ax2+bx+c的最大(或最小)值k.※(3)注意:2x1xx1x222.8.同底数幂的除法:am÷an=am-n,底数不变,指数相减.9.零指数与负指数公式:(1)a0=1(a≠0);a-n=na1,(a≠0).注意:00,0-2无意义;(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.01×10-5.10.单项式除以单项式:系数相除,相同字母相除,只在被除式中含有的字母,连同它的指数作为商的一个因式.11.多项式除以单项式:先用多项式的每一项除以单项式,再把所得的商相加.※12.多项式除以多项式:先因式分解后约分或竖式相除;注意:被除式-余式=除式·商式.13.整式混合运算:先乘方,后乘除,最后加减,有括号先算括号内.线段、角、相交线与平行线几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)1.角平分线的定义:一条射线把一个角分成两个相等的部分,这条射线叫角的平分线.(如图)ABCO几何表达式举例:(1)∵OC平分∠AOB∴∠AOC=∠BOC(2)∵∠AOC=∠BOC∴OC是∠AOB的平分线2.线段中点的定义:点C把线段AB分成两条相等的线段,点C叫线段中点.(如图)BAC几何表达式举例:(1)∵C是AB中点∴AC=BC(2)∵AC=BC∴C是AB中点3.等量公理:(如图)(1)等量加等量和相等;(2)等量减等量差相等;(3)等量的等倍量相等;(4)等量的等分量相等.CDAB(1)CDABO(2)几何表达式举例:(1)∵AC=DB∴AC+CD=DB+CD即AD=BC(2)∵∠AOC=∠DOB∴∠AOC-∠BOC=∠DOB-∠BOCAEFGBCMO(3)CGABEF(4)即∠AOB=∠DOC(3)∵∠BOC=∠GFM又∵∠AOB=2∠BOC∠EFG=2∠GFM∴∠AOB=∠EFG(4)∵AC=21AB,EG=21EF又∵AB=EF∴AC=EG4.等量代换:几何表达式举例:∵a=cb=c∴a=b几何表达式举例:∵a=cb=d又∵c=d∴a=b几何表达式举例:∵a=c+db=c+d∴a=b5.补角重要性质:同角或等角的补角相等.(如图)3214几何表达式举例:∵∠1+∠3=180°∠2+∠4=180°又∵∠3=∠4∴∠1=∠26.余角重要性质:同角或等角的余角相等.(如图)1423几何表达式举例:∵∠1+∠3=90°∠2+∠4=90°又∵∠3=∠4∴∠1=∠27.对顶角性质定理:对顶角相等.(如图)BACDO几何表达式举例:∵∠AOC=∠DOB∴……………8.两条直线垂直的定义:两条直线相交成四个角,有一个角是直角,这两条直线互相垂直.(如图)CDABO几何表达式举例:(1)∵AB、CD互相垂直∴∠COB=90°(2)∵∠COB=90°∴AB、CD互相垂直9.三直线平行定理:两条直线都和第三条直线平行,那么,这两条直线也平行.(如图)CDABEF几何表达式举例:∵AB∥EF又∵CD∥EF∴AB∥CD10.平行线判定定理:两条直线被第三条直线所截:(1)若同位角相等,两条直线平行;(如图)(2)若内错角相等,两条直线平行;(如图)(3)若同旁内角互补,两条直线平行.(如图)几何表达式举例:(1)∵∠GEB=∠EFD∴AB∥CD(2)∵∠AEF=∠DFE∴AB∥CD(3)∵∠BEF+∠DFE=180°BEGACDFH∴AB∥CD11.平行线性质定理:(1)两条平行线被第三条直线所截,同位角相等;(如图)(2)两条平行线被第三条直线所截,内错角相等;(如图)(3)两条平行线被第三条直线所截,同旁内角互补.(如图)BEGACDFH几何表达式举例:(1)∵AB∥CD∴∠GEB=∠EFD(2)∵AB∥CD∴∠AEF=∠DFE(3)∵AB∥CD∴∠BEF+∠DFE=180°几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:直线、射线、线段、角、直角、平角、周角、锐角、钝角、互为补角、互为余角、邻补角、两点间的距离、相交线、平行线、垂线段、垂足、对顶角、延长线与反向延长线、同位角、内错角、同旁内角、点到直线的距离、平行线间的距离、命题、真命题、假命题、定义、公理、定理、推论、证明.二定理:1.直线公理:过两点有且只有一条直线.2.线段公理:两点之间线段最短.3.有关垂线的定理:(1)过一点有且只有一条直线与已知直线垂直;(2)直线外一点与直线上各点连结的所有线段中,垂线段最短.4.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.三公式:直角=90°,平角=180°,周角=360°,1°=60′,1′=60″.四常识:1.定义有双向性,定理没有.2.直线不能延长;射线不能正向延长,但能反向延长;线段能双向延长.3.命题可以写为“如果………那么………”的形式,“如果………”是命题的条件,“那么………”是命题的结论.4.几何画图要画一般图形,以免给题目附加没有的条件,造成误解.5.数射线、线段、角的个数时,应该按顺序数,或分类数.6.几何论证题可以运用“分析综合法”、“方程分析法”、“代入分析法”、“图形观察法”四种方法分析.7.方向角:(1)(2)8.比例尺:比例尺1:m中,1表示图上距离,m表示实际距离,若图上1厘米,表示实际距离m厘米.9.几何题的证明要用“论证法”,论证要求规范、严密、有依据;证明的依据是学过的定义、公理、定理和推论.北偏西30°南偏东60°30°60°北南东西东北东南西北西南
本文标题:初一数学知识点下册
链接地址:https://www.777doc.com/doc-2653224 .html