初中数学公式定理概括代数部分第一章有理数及其运算1自然数及其运算11自然数零的符号是“0”,它表示没有数量或进位制上的空位除0之外,任何自然数都是由若干个“1”组成的,“1”是数个数的单位,称作自然数的单位自然数的全体:0,1,2,3,4,…,n…,叫做自然数的集合,简称自然数集能被2整除的数叫做偶数;不能被2整除的数叫做奇数12自然数的运算1加法:求和的运算叫做加法2减法:减法是加法的逆运算3乘法:同一个自然数的连加运算,就叫做乘法4除法:除法是乘法的逆运算,零不能做除数13自然数的运算性质用字母表示任一个自然数,来说明对于任何自然数的运算普遍成立的运算规律和运算特征即它们的共同性质,并简称为运算通性或运算律1加法交换律:a+b=b+a2加法结合律:(a+b)+c=a+(b+c)3乘法交换律:a·b=b·a4乘法对加法的分配律:(a+b)·c=a·c+b·c5加法结合律:(a·b)·c=a·(b·c)6自然数0和1的运算特征14乘法运算及指数运算律求同一个数得连乘运算,叫做乘方运算na中,a叫做底数,自然数n叫做指数,乘方的结果na叫做幂(读作“a的n次幂”或“a的n次方”)零的n次方总等于零,1的n次方总等于1同底数幂相乘,底数不变,只是指数相加指数运算律(一)同底数幂相乘,指数相加,底数不变,即().mnmnaaa指数运算律(二)乘积的幂,等于各因数的幂的乘积,即().nnnabab指数运算律(三)幂的乘方,指数相乘,底数不变,即()()mnmnaa指数运算律(四)同底数幂相除,指数相减,底数不变,即()/mnmnaaa,其中mn,a!=0两个同底数(不为0)、同指数的幂相除,其商等于1,0a=1(a!=0)分数的意义与特点11.....ababababbb,aambbm(m!=0),/aabbbn(n!=0)分数有一个重要的基本性质:一个分数的分子、分母同时乘以或除以同一个不为零的数,分数的值不变22分数的运算及运算律加、减法acadbcadbcbdbdbdbd乘法acacbdbd除法acadadbdbcbc乘方(/)mab=ab.ab.ab.ab….{m个括号}=mmab分数加法的交换律是accabddb30有理数的意义31相反意义的量在研究两者的总效果时,可以互相抵消或一部分抵消32正数和负数、相反数带有正号的数叫做正数(“+”号也可省略不写);带有负号的数叫做负数负数与正数合并时,其结果可以相消或部分抵消数零,既不是正数,也不是负数对任一个数a,总能有一个数-a,使它们可以相消,像这样只是符号不同的两个数,叫做互为相反数零的相反数,仍是零33有理数、数轴整数包括正整数、负数和零分数包括正分数、负分数整数和分数,统称为有理数全体有理数组成的集合,称为有理数集合全体整数组成的集合,称为整数集合全体自然数组成自然数集合有理数可以用一条直线上的点来表示规定了原点、正方向和单位程度的直线叫做数轴对于任一个有理数,在数轴上都可以有一个确定的点表示它正数和负数,可表示“相反意义”的量,而数零是它们的界限互为相反数的一对数,在数轴上总是表示到原点距离相等的一对点零与它们的相反数都用原点表示34绝对值一个有理数在数轴上所对应的点至原点的距离叫做绝对值一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;零的绝对值是零4有理数的运算41有理数的加法与减法加法符号相同的两个有理数相加,只要将两数的绝对值相加,符号仍取原来的符号两个符号相反的有理数相加,将较大的绝对值减去较小的绝对值,符号取绝对值较大的加数的符号减法减法是加法的逆运算减法法则是减去一个数,等于加上这个有理数的相反数在有理数范围内,减法运算也是畅通无阻的42代数和含有加减运算的式子,都能转化成井含有加法运算的式子,我们称它为“代数和”去括号法则:去掉紧接正号后面的括号时,括号里的各项都不变;去掉紧接负号后面的括号时,括号里的各项都要变号添括号法则:紧接正号后面添加括号时,括号到括号里的各项都不变;紧接符号后面添加括号时,括到括号里的各项都要变号43有理数的乘法与除法乘法异号(一负一正)两有理数相乘,将绝对值相乘,符号取负两个负有理数相乘,将绝对值相乘,符号取正乘法法则:将绝对值相乘,积的符号是:同号得正,异号得负当负乘数有奇数个时,成积为负;当负乘数有偶数个时,成积为正;只要有一个乘数为零,那么乘积必定是零除法除法法则:将绝对值相除,商的符号是:同号相除得正,异号相除得负零除以任一个非零有理数,其商仍为零零不能作除数任一个非零有理数x,除1所得的商1x,叫做这个数x的倒数非零有理数x与1x互为倒数,其特征性质是x·1x=1零没有倒数除以一个非零有理数,就等于乘以这个数的倒数a/b=a·1/b=a/b44有理数的乘方非零有理数的乘方,将其绝对值乘方,而结果的符号是:正数的任何次乘方都取正号;负数的奇数乘方取负号,负号的偶次乘方取正号零的非零次都0;零的零次方没有意义45有理数的混合运算先乘方,再乘除,后加减;若有括号,则“先里后外”去括号,逐步计算46近似数和有效数字与实际相符的数,叫做准确数与实际接近的数,叫近似数一般地,一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位这时,从左边第一个非零数字起到精确到那一位数字止,所有的数字,都叫做这个数的有效数字。5有理数的基本性质51有理数运算的“通性”1加、减、乘(乘方)、除运算的封闭性任意两个有理数的和、差、积、商(0不作除数)都还是有理数这就是有理数四则运算的封闭性相比之下,在自然数范围内,除法(除数不为0)、减法都不封闭;在整数范围内,除法(除数不为0)也不封闭。2加法、乘法运算满足交换律、结合律和分配律(1)加法的交换律、结合律对于有理数a、b、c来说a+b=b+a;(a+b)+c=a+(b+c)(2)乘法的交换律、结合律对于有理数a、b、c来说,a·b=b·a;(a·b)·c=a·(b·c)(3)乘法对于加法的分配律对于有理数a、b、c来说a·(b+c)=a·b+a·c3加、减法运算,乘、除运算的统一(1)加、减运算的统一任意一个有理数a,总有它唯一的一个相反数-a,使得(-a)+a=a+(-a)=0因而,有理数减法,就可以转化为加法,即a-b=a+(-b)(2)乘、除运算的统一任意一非零有理数b,总有它唯一的一个倒数1/b,使得b·1/b=1/b·b=1因而,有理数除法,就可以转化为乘法,即a/b=a·1/b(b!=0)4数0与1的特性对于任意有理数a来说,a+0=0+a=a;a·0=0·a=0;a·1=1·a=a5乘方运算满足指数运算律52有理数的大小顺序负数零正数a-b0,ab;a-b=0,a=b;a-b0,ab负数小于0,0小于正数,负数小于正数;两个整数比较时,绝对值大的数较大;两个负数比较时,绝对值大的数反而较小负数按绝对值由大到小排列,正数按绝对值由小到大排列在数轴上,右边的点所表示的有理数总是大于左边的点所表示的有理数53等式与不等式的基本性质1等式用等号“=”联结两个算式的式子,叫做等式无需任何条件,本来就是真实的等式,叫做恒等式在某些条件下,才能成为真实的等式,叫做条件等式根本不能成立的等式,叫矛盾等式等式有以下基本性质:1)等式的两边可以对调2)等式的关系可以传递3)等式的两边,可以加上(或减去)同一个数4)等式的两边,可以乘以(或除以非零的)同一个数2不等式用不等号“”或“”表示的关系式,叫做不等式1)如果AB,那么BA2)如果AB,BC,那么AC3)如果AB,那么A(+,-)mB(+,-)m4)如果AB,且m0,那么AmBm5)如果AB,且m0,那么AmBm第二章一次方程(组)与一次不等式(组)1算术解法与代数解法11两种解法的分析、对比12未知数和方程用字母x、y、…等,表示所要求的数量,这些字母称为“未知数”用运算符号把数或表示书的字母联结而成的式子,叫做代数式含有未知数的等式,叫做方程在一个方程中,所含未知数,又成为元;被“+”、“-”号隔开的每一部分称为一项在一项中,数字或表示已知数的字母因数叫做未知数的系数某一项所含有的未知数的指数和,成为这一项的次数不含未知数的项,成为常数项当常数不为零时,它的次数是0,因此常数项也称为零次项13方程的解与解方程的根据未知数应取的值是指:把所列方程中的未知数换成这个值以后,就使方程变成一个恒等式能是方程左右两边的值相等的未知数的值,叫做方程的解,也叫做根求方程解的过程,叫做解方程解方程的根据是“运算通性”及“等式性质”可以“由表及里”地去掉括号,并将“含有相同未知数且含未知数的次数也相同”的各项结合起来,合并在一起——这叫做合并同类项把方程一边的任一项改变符号后,移到方程的另一边,叫做移项简单说就是“移项变号”把方程两边各同除以未知数的系数(或同乘以系数的倒数),就得到未知数应取的值综上所述,得到解方程的方法、步骤:去括号、移项变号、合并同类项,使方程化为最简形式ax=b(a!=0)、除以未知数的系数,得出x=ba(a!=0)2一元一次方程只含有一个未知数并且次数是1的方程,叫做一元一次方程一般形式:ax+b=0(a!=0,a、b是常数)22一元一次方程的解法解一元一次方程的一般步骤是:1去分母(或化为整系数);2去括号;3移项变号;4合并同类项,化为ax=-b(a!=0)的形式;5方程两边同除以未知数的系数,得出方程的解x=-ba3一次方程组31二元一次方程含有两个未知数的一次方程叫做二元一次方程能够使二元一次方程两边的值相等的未知数x、y的一组值,叫做这个二元一次方程的一个解任何一个二元一次方程都有无限多个解,正因为如此,二元一次方程也被称为不定方程32方程组与方程组的解把几个方程联合在一起,组成一个整体,叫做联立方程,也叫方程组由几个一次方程组并含有两个未知数的方程组,成为二元一次方程组能够同时满足方程组中每一个方程的未知数的数组,叫做方程组的解33二元一次方程组的解法求方程组的解的过程,叫做解方程组设把二元方程转化为一元方程求解,称为消元法叫做加减消元法,简称加减法原方程组是矛盾方程组,无解34三元一次方程组及其解法含有三个未知数的三元一次方程组4解应用问题5一元一次不等式(组)51一元一次方程式在含有未知数的不等式中,如果只含有一个未知数、分母不含未知数,并且未知数的次数是一次,那么这样的不等式,叫做一元一次不等式能够使不等式成立的未知数的值,称为这个不等式的解,所有这样的解的集合,简称为这个不等式的解集,52一元一次不等式的解法求不等式的解集的过程,叫做解不等式53一元一次不等式组由几个含有同一个未知数的一次不等式组成的不等式组,叫做一元一次不等式不等式组中每个不等式的解的公共部分,叫做这个不等式组的解集54一元一次不等式组的解法解一元一次不等式组的一般步骤是:1先求出不等式组里各个不等式的解集;2在求出这些不等式的解集的公共部分,就得到这个不等式组的解集第三章一元二次方程1平方与平方根11面积与平方(1)任意两个正数的和的平方,等于这两个数的平方和,再加去这两个数乘积的2倍:222()2abaabb(2)任意两个正数的差的平方,等于这两个数的平方和,再减去这两个数乘积的2倍:222()2abaabb(3)任意两数的平方的和,等于这两个数和的平方减去这两个数乘积的2倍。公式:222()2ababab(4)任意两数的平方的差,等于这两个数差的平方加上这两个数乘积的2倍。公式:222()2ababab总结:任意两个有理数的和(或差)的平方,等于这两个数的平方和,再加上(或减去)这两个数乘积的2倍12平方根1正数有两个平方根,这两个平方根互为相反数;2零只有一个平方根,它就是零本身;3负数没有平方根14实数无限不循环小数叫做无理数有理数和无理数统称为实数2平方根的运算21算术平方根的性质性质1一个非负数的算术平方根的平方等于这个数本身性质2一个数的平方的算术平方根等于这