初二数学知识点总结(包括八年级人教版上下两册知识内容_非常完整)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

n≠0,p为正整数)单项式的乘法法则:单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.单项式与多项式的乘法法则:单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.多项式与多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2、乘法公式:①平方差公式:(a+b)(a-b)=a2-b2文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.②完全平方公式:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.3、因式分解:因式分解的定义.把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.掌握其定义应注意以下几点:(1)分解对象是多项式,分解结果必须是积的形式,且积的因式必须是整式,这三个要素缺一不可;(2)因式分解必须是恒等变形;(3)因式分解必须分解到每个因式都不能分解为止.弄清因式分解与整式乘法的内在的关系.因式分解与整式乘法是互逆变形,因式分解是把和差化为积的形式,而整式乘法是把积化为和差的形式.二、熟练掌握因式分解的常用方法.1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的关键是找出公因式,公因式的构成一般情况下有三部分:①系数一各项系数的最大公约数;②字母——各项含有的相同字母;③指数——相同字母的最低次数;(3)提公因式法的步骤:第一步是找出公因式;第二步是提取公因式并确定另一因式.需注意的是,提取完公因式后,另一个因式的项数与原多项式的项数一致,这一点可用来检验是否漏项.(4)注意点:①提取公因式后各因式应该是最简形式,即分解到“底”;②如果多项式的第一项的系数是负的,一般要提出“-”号,使括号内的第一项的系数是正的.2、公式法运用公式法分解因式的实质是把整式中的乘法公式反过来使用;常用的公式:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2八年级下册知识点总结第十六章分式1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子BA叫做分式。2.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。3.分式值为零的条件:当分式的分子等于0且分母不等于0时,分式的值为0。(分式的值是在分式有意义的前提下才可以考虑的,所以使分式AB为0的条件是A=0,且B≠0.)(分式的值为0的条件是:分子等于0,分母不等于0,二者缺一不可。首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。)4.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。用式子表示为(0C),其中A、B、C是整式注意:(1)“C是一个不等于0的整式”是分式基本性质的一个制约条件;(2)应用分式的基本性质时,要深刻理解“同”的含义,避免犯只乘分子(或分母)的错误;(3)若分式的分子或分母是多项式,运用分式的基本性质时,要先用括号把分子或分母括上,再乘或除以同一整式C;(4)分式的基本性质是分式进行约分、通分和符号变化的依据。5.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。通分的关键是确定几个式子的最简公分母。几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,通常取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。CBCABACBCABA6.分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。约分的关键是找出分式中分子和分母的公因式。(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;(2)找公因式的方法:①当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,先把多项式因式分解。易错点:(1)当分子或分母是一个式子时,要看做一个整体,易出现漏乘(或漏除以);(2)在式子变形中要注意分子与分母的符号变化,一般情况下要把分子或分母前的“—”放在分数线前;(3)确定几个分式的最简公分母时,要防止遗漏只在一个分母中出现的字母;7.分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。用式子表示是:提示:(1)分式与分式相乘,若分子、分母是单项式,可先将分子、分母分别相乘,然后约去公因式,化为最简分式;若分子、分母是多项式,先把分子、分母分解公因式,看能否约分,然后再相乘;(2)当分式与整式相乘时,要把整式与分式的分子相乘作为积的分子,分母不变(3)分式的除法可以转化为分式的乘法运算;(4)分式的乘除混合运算统一为乘法运算。①分式的乘除法混合运算顺序与分数的乘除混合运算相同,即按照从左到右的顺序,有括号先算括号里面的;②分式的乘除混合运算要注意各分式中分子、分母符号的处理,可先确定积的符号;③分式的乘除混合运算结果要通过约分化为最简分式(分式的分子、分母没有公因bcadcdbadcbabdacdcba;式)或整式的形式。分式乘方法则:分式乘方要把分子、分母各自乘方。用式子表示是:(其中n是正整数)注意:(1)乘方时,一定要把分式加上括号;(2)分式乘方时确定乘方结果的符号与有理数乘方相同,即正分式的任何次幂都为正;负分式的偶次幂为正,奇次幂为负;(3)分式乘方时,应把分子、分母分别看做一个整体;(4)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分。分式的加减法则:法则:同分母的分式相加减,分母不变,把分子相加减。用式子表示为:ab±cb=a±cb法则:异分母的分式相加减,先通分,转化为同分母分式,然后再加减。用式子表示为:ab±cd=adbd±bcbd=ad±bcbd注意:(1)“把分子相加减”是把各个分子的整体相加减,即各个分子应先加上括号后再加减,分子是单项式时括号可以省略;(2)异分母分式相加减,“先通分”是关键,最简公分母确定后再通分,计算时要注意分式中符号的处理,特别是分子相减,要注意分子的整体性;(3)运算时顺序合理、步骤清晰;(4)运算结果必须化成最简分式或整式。分式的混合运算:分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,计算结果要化为整式或最简分式。nnnbaba)(8.任何一个不等于零的数的零次幂等于1,即)0(10aa;当n为正整数时,nnaa1()0a注意:当幂指数为负整数时,最后的计算结果要把幂指数化为正整数。9.整数指数幂:若m、n为正整数,a≠0,am÷am+n=amam.an=1an又因为am÷am+n=am-﹙m+n﹚=a-n,所以a-n=1an一般地,当n是正整数时,a-n=1an(a≠0),即a-n(a≠0)是an的倒数,这样指数的取值范围就推广到全体整数。整数指数幂可具有下列运算性质:(m,n是整数)(1)同底数的幂的乘法:nmnmaaa;(2)幂的乘方:mnnmaa)(;(3)积的乘方:nnnbaab)(;(4)同底数的幂的除法:nmnmaaa(a≠0);(5)商的乘方:nnnbaba)(;(b≠0)规定:a0=1(a≠0),即任何不等于0的零次幂都等于1.10.分式方程:含分式,并且分母中含未知数的方程叫做分式方程。分式方程的解法:(1)解分式方程的基本思想方法是:分式方程-----→整式方程.(2)解分式方程的一般方法和步骤:①去分母:即在方程的两边都同时乘以最简公分母,把分式方程化为整式方程,依据是等式的基本性质;②解这个整式方程;③检验:把整式方程的解代入最简公分母,使最简公分母不等于0的解是原方程的解,使最简公分母等于0的解不是原方程的解,即说明原分式方程无解。注意:①去分母时,方程两边的每一项都乘以最简公分母,不要漏乘不含分母的项;②解分式方程必须要验根,千万不要忘了!去分母转化解分式方程的步骤:(1)能化简的先化简;(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根.分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。11.含有字母的分式方程的解法:在数学式子的字母不仅可以表示未知数,也可以表示已知数,含有字母已知数的分式方程的解法,也是去分母,解整式方程,检验这三个步骤,需要注意的是要找准哪个字母表示未知数,哪个字母表示未知数,还要注意题目的限制条件。计算结果是用已知数表示未知数,不要混淆。12.列分式方程解应用题的步骤是:(1)审:审清题意;(2)找:找出相等关系;(3)设:设未知数;(4)列:列出分式方程;(5)解:解这个分式方程;(6)验:既要检验根是否是所列分式方程的解,又要检验根是否符合题意;(7)答:写出答案。应用题有几种类型;基本公式是什么?基本上有五种:(1)行程问题基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.(2)数字问题:在数字问题中要掌握十进制数的表示法.(3)工程问题基本公式:工作量=工时×工效.(4)顺水逆水问题v顺水=v静水+v水.v逆水=v静水-v水.11.科学记数法:把一个数表示成na10的形式(其中101a,n是整数)的记数方法叫做科学记数法.用科学记数法表示绝对值大于1的数时,应当表示为a×10n的形式,其中1≤︱a︱<10,n为原整数部分的位数减1;用科学记数法表示绝对值小于1的数时,则可表示为a×10-n的形式,其中n为原数第1个不为0的数字前面所有0的个数(包括小数点前面的那个0),1≤︱a︱<10.第十七章反比例函数1.定义:一般地,如果两个变量x、y之间的关系表示成y=xk(k为常数,k≠0)的形式,那么称y是x的反比例函数,其中x是自变量,y是函数。例如y=50x;y=-8x;y=m2+1x(m为常数)等。提示:(1)y=kx也可以写作y=kx-1的形式或xy=k的形式(k为常数且k≠0);(2)反比例函数的自变量x不能为0;(3)k=xy是反比例函数的另一种表示形式,即两变量的积是一个常数。2.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和y=-x。对称中心是:原点。3.性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小;当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。知识点:1·一般地,如果两个变量x、y之间的关系可表示成y=kx(K为常数,K≠0)的形式,那么称y

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功