遥感图像分形特征提取与分割

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

遥感图像分形特征提取与分割郑桂香,蔺启忠(,100101):分形理论由B.B.Mandelbrot于20世纪70年代中期创立,现已被广泛地应用于自然科学和社会科学的几乎所有领域本文在前人研究的基础上,利用双毯法(DoubleBlanketMethod)提取出图像的分形特征并用于图像分割,进一步证实了分形在此领域的可行性和有效性首先,通过比较局部分形维数偏移全局分形维数的标准差来确定适合该方法的最优滑动窗口其次,考虑到单尺度分维特征的局限性,提取出多尺度的特征值并建立分形维数谱然后,以模拟图像为例,分析图像中各区域的分维谱,选择适当尺度的分形特征,利用最大似然法对图像进行分割最后,将分形理论应用于遥感图像中,与传统的基于灰度值特征的图像分割方法相比,加入图像的空间分形纹理特征后分割精度明显提高研究结果表明:分维值的大小和变化趋势可以表示不同地物的空间复杂度,结合地物的光谱以及灰度信息能有效地识别目标地物:遥感;多尺度分形;双毯法;图像分割:TP751:A:1000-3177(2008)95-0009-07:2007-06-13:(40371085):(1983~),,,,Email:zhenggui913@163.com1B.B.Mandelbrot,Pentland,[1],Peleg,,,[2~3],,[4][5]TM,[6];[7],,,,,,,,2Mandebrot:[8];,[9]HausdorffPeleg,,,r2rr,[2]:f(i,j),ur,br92008.1遥感信息u0(i,j)=b0(i,j)=f(i,j)(1):ur(i,j)=max{ur1(i,j)+1,maxd(i,j,m,n)1ur1(m,n)},r=1,2,3!(2)br(i,j)=max{br1(i,j)+1,maxd(i,j,m,n)1br1(m,n)},r=1,2,3!(3),d(i,j,m,n)(i,j)(m,n),:A(r)=i,j(ur(i,j)br(i,j))2r(4)A(r)∀k*r2D,,logA(r)=C1logr+C0(5),C1D=2C1A(k,l,r)=k+wi=kwl+wj=lw(ur(i,j,r)br(i,j,r))2r(6)(LFD)[3],(k,j),(2w+1)#(2w+1),(5)(6),(GFD),,,A(r)∀k*r2D,logrlogA(r),,,,[3,10],,,[11],,3,T.Parrinello[12],,(1(a))256#256,,0~255matlabrandn(0,1),:Iinner(x,y)=100cos(0.03x3)+127(b)(2,10)(a)1(b)213.1:,1(a)3,,21(b),3,[13],2032#32r=10,3#3,5#5,7#7,9#9(LFD)(GFD),2SELFDGFD,SE:0.039381,0.025816,0.020892,0.021352LFDGFD,,5#5,LFDGFD5#5,r=10LFD110遥感信息2008.12r=10,LFDGFD,3(a),(2,2.35),,(2.8,3.0),,,3(b),2:,,(2.8,3),,(a)1(b)23,y=140,,4(1),(2.8,3),,(2,2.35)(50,140),(200,140),,,1,,,2,3(b)4(b),(a)1(b)24(y=140):112008.1遥感信息3.2,2101~100,5:(1);(2),,100:∃,:,(2,10),(0,1),%11185(1)5(2),r=3,10,100,,,2(a)(b)523.3,,,,[11],,6(a)1,6(b)10,99.0404%,Kappa0.9807(a)(b)612,61.0956%,Kappa0.2156,,,1,98.0008%;,12Scale:OverallAccuracyKappaCoefficient376.9292%0.54261076.4494%0.534210076.8892%0.54303,1078.8085%0.583410,10096.2015%0.92343,10088.2047%0.76493,10,10098.0008%0.9597,,r=10r=100,(r10r100)/(r10+r100),r=100,r=10,r=100,12遥感信息2008.193.7625%,Kappa0.8745,(a)10(b)3,10,1007242001821ASTER123,512#512,4.1,,,8,:(1),,;(),,,(2),1230.5560m,0.6610m,0.8070mDN,FDband3FDband1FDband2,,VFDI(VegetationFractalDimensionIndex),FDband3,r=30ASTERr=30,FDband2,r=100ASTERr=100VFDI=FDband3,r=30FDband2,r=100(2),3DN(3)ASTER12315m,,,,8(4),,1,30~50,235~703,45~854.25#5,r=30,40,70,,:∃:82.6986%,Kappa0.7819;,84.7116%(r=70);,r=4085.8426%%,9,,9(a),,9(b),,,&9(d),,5,132008.1遥感信息,,85.8426%,3%,:,,;(),,,,,:,,1A.P.Pentland.Fractalbaseddescriptionofnaturalscenes[J].IEEETrans.,1984,PAMI-6,(6):661~674.2S.Peleg,J.NaoR,R.HartleyandD.Avnir.Multipleresolutiontextureanalysisandclassification[J],IEEETrans.,1984,PAMI(6):518~523.14遥感信息2008.13T.Peli.Multiscalefractaltheoryandobjectcharacterization[J].J.Opt.Soc.AmA,1990,7(6):1101~1112.4,.[J].,2000,12(1):53~57.5.[J].,1993,8(12):23~27.6,,.[J].,1998,2(1):47~50.7.[J].,1998,23(4):370~373.8B.B.Mandelbrot.,.∋[M].:,1999.9B.B.Mandelbrot.TheFractalGeometryofNature.Freeman[M].SanFrancisco,Cali,1982.10JayFeng.Fractionalfractalgeometryforimageprocessing[D].Illinois:NorthwesternUniversity,2000.11,.[M].:,2003.12T.ParrinelloandR.A.Vaughan.Multifractalanalysisandfeatureextractioninsatelliteimagery[J].INT.J.RemoteSensing,2002,23(9):1799~1825.13SonnyNovianto,etal.Nearoptimumestimationoflocalfractaldimensionforimagesegmentation[J].PatternRecognitionLetters,2003(24):365~374.FractalFeatureExtractionandSegmentationofRemoteSensingImageryZHENGGuixiang,LINQizhong(InstituteofRemoteSensingApplication,ChineseAcademyofSciences,Beijing100101,China)Abstract:FractalmethodisanewsubjectwhichwasfoundedbyAmericanscientistB.B.Mandelbrotinthemiddleof1970s,whichiswidelyappliedtoalmostallthefieldsofphysicalandsocialsciences.Basedonpreviousstudies,thispaperextractedthefractalfeaturesofimagesbyusingtheDoubleBlanketMethodandappliedthemtoimagesegmentationwhichshowedthevalidityandfeasibilityoffractalinthisfieldfurther.Firstly,anoptimumwindowwasselectedbycomparingthestandarderrorbetweenlocalandglobalfractaldimensions.Secondly,multiscalefractalfeatureswereextractedandfractaldimensionspectrumswereestablishedwithregardtosinglescale(slimitation.Then,byanalyzingobjectfractaldimensionspectrum,appropriatefeatureswereutilizedtosimulativeimagesegmentationbasedonthemaximumlikelihoodmethod.Atlast,fractaltheorywasbestowedtoremotesensingimage.Relativetothetraditionalmethodconsistedofonlygraylevelfeatures,theoverallsegmentationaccuracywasobviouslyimprovedwhenconsideredthespatialfractaltexturefeatures.Theresultsshowedthatfractaldimensionanditschangetrendcoulddisplayspatialcomplexityofdifferentobjects.Combinedwiththespectrumandgraylevelinformation,theobjectscanbediscriminatedeasily.Keywords:remotesensing;multiscalefractal;DoubleBlanketMethod;imagesegmentation(8)ANewMethodofAcquiringThreeComponentsofDeformationDisplacementBasedonDInSARTechniqueZHAXianjie,FURongshan,LIUBin,DAIZhiyang,SHAOZhigang,HANLibo(SchoolofEarth&SpatialScience,ChineseScienceTechnologyUniversity,Hefei230026)Abstract:AnewmethodofacquiringthreecomponentsofsurfacedeformationusingthreeSARinterferogramswithdifferentsatellite(slineofsightispresented.Toverifythismethod,interferogramsoftwotypeidealsurfacedeformationsaremodeledwiththr

1 / 7
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功