课题:数的认识复习内容——(1)数和小数知识要点:小数1、把整数1平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……这些分数可以用小数表示。2、一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几。小数的分类1、根据整数部分划分:纯小数、带小数2、根据小数部分划分:有限小数、无限小数无限小数可以分为无限不循环小数和无限循环小数无限循环小数可以分为:纯循环小数和混循环小数整数和小数数位顺序表整数部分小数点小数部分…亿级万级个级数位…千亿位百亿位十亿位亿位千万位百万位十万位万位千位百位十位个位?十分位百分位千分位万分位…计数单位…千亿百亿十亿亿千万百万十万万千百十一十分之一百分之一千分之一万分之一…多位数的读法和写法1、多位数的读法:从高位起,一级一级往下读;读亿级或万级的数时,要按照个级的读法来读,再在后面加上“亿”字或“万”字;每级末尾的0都不读,其他数位有一个0或连续有几个0都只读一个“零”。2、多位数的写法:从高位起,一级一级往下写;哪个数位上一个单位也没有,就在哪个数位上写0。小数的读法和写法1、小数的读法:通常是整数部分按整数的读法读,小数点读作“点”,小数部分按顺序只读出数字。2、小数的写法:写小数时,整数部分按整数写,小数点写在个位的右下角,小数部分依次写出每一个数位上的数字。数的改写和省略尾数1、改写成以“万”或“亿”为单位的数:在一个多位数的“万”位或“亿”位的右边点上小数点,把小数末尾的零去掉,然后再写上“亿”或“万”字。2、省略“万”或“亿”位后面的尾数:又称为四舍五入到“万”或“亿”位;精确到“万”或“亿”位。省略“万”位后面的尾数,就是把千位上的数字用“四舍五入”法取近似值。课题:数的认识复习内容(2)——数的整除知识要点整除的意义整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)除尽的意义甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。整除和除尽的联系和区别整除和除尽,他们所有的结果都没有余数,这是他们的共同点。“除尽”包括“整除”,“整除”是除尽的一种特殊情况。约数和倍数1、如果数a能被数b整除,a就叫b的倍数,b就叫a的约数。2、一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。3、一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数。奇数和偶数1、能被2整除的数叫偶数。例如:0、2、4、6、8、10……注:0也是偶数2、不能被2整除的数叫基数。例如:1、3、5、7、9……整除的特征1、能被2整除的数的特征:个位上是0、2、4、6、8。2、能被5整除的数的特征:个位上是0或5。3、能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3整除。质数和合数1、一个数只有1和它本身两个约数,这个数叫做质数(素数)。2、一个数除了1和它本身外,还有别的约数,这个数叫做合数。3、1既不是质数,也不是合数。4、自然数按约数的个数可分为:1、质数、合数5、自然数按能否被2整除分为:奇数、偶数分解质因数1、每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。例如:18=3×3×2,3和2叫做18的质因数。2、把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数。通常用短除法来分解质因数。3、特殊情况下几个数的最大公约数和最小公倍数。(1)如果几个数中,较大数是较小数的倍数,较小数是较大数的约数,则较大数是它们的最小公倍数,较小数是它们的最大公约数。(2)如果几个数两两互质,则它们的最大公约数是1,小公倍数是这几个数连乘的积。课题:数的认识复习内容(3)——分数和百分数知识要点分数和百分数的意义1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。在分数里,表示把单位“1”平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位。2、百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。也叫百分率或百分比。百分数通常不写成分数的形式,而用特定的“%”来表示。3、百分数表示两个数量之间的倍比关系,它的后面不能写计量单位。4、成数:几成就是十分之几。分数的种类按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数分数、小数和百分数的关系及互化小数百分数分数分数和除法的关系及分数的基本性质1、联系:分数的分子相当除法的被除数;分母相当于除数;分数值相当于商区别:除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。2、由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。3、分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。约分和通分1、分子、分母是互质数的分数,叫做最简分数。2、把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。3、约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。4、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。5、通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。倒数1、乘积是1的两个数互为倒数。2、2、求一个树(0除外)的倒数,只要把这个数的分子、分母调换位置。3、1的倒数是1,0没有倒数分数的大小比较1、分母相同的分数,分子大的那个分数就大。2、分子相同的分数,分母小的那个分数就大。3、分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。4、如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。课题:数的运算复习内容(1)——四则混合运算的意义和法则知识要点四则运算的意义加法:把两个数合并成一个数的运算减法:已知两个数的和与其中一个加数,求另一个加数的运算乘法:a、一个数乘以整数,就是求几个相同加数的和的简便运算b、一个数乘以小数或分数,就是求这个数的几分之几是多少除法:已知两个因数的积与其中的一个因数,求另一个因数的运算四则运算的法则1、加法a、整数和小数:相同数位对齐,从低位加起,满十进一b、同分母分数:分母不变,分子相加;异分母分数:先通分,再相加2、减法a、整数和小数:相同数位对齐,从低位减起,哪一位不够减,退一当十再减b、同分母分数:分母不变,分子相减;异分母分数:先通分,再相减3、乘法a、整数和小数:用乘数每一位上的数去乘被乘数,用哪一位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同b、分数:分子相乘的积作分子,分母相乘的积作分母。能约分的先约分,结果要化简4、除法a、整数和小数:除数有几位,先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上。除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐b、甲数除以乙数(0除外),等于甲数除以乙数的倒数课题:数的运算复习内容(2)——运算定律和简便算法知识要点加法交换律a+b=b+a结合律(a+b)+c=a+(b+c)减法性质a-b-c=a-(b+c)乘法交换律a×b=b×a结合律(a×b)×c=a×(b×c)分配律(a+b)×c=a×c+b×c除法商不变性质m≠0a÷b=(a×m)÷(b×m)=(a÷m)÷(b÷m)课题:数的运算复习内容(3)——四则混合运算知识要点四则混合运算无括号只有一级运算——自左而右,依次计算含有两级运算——先算第二级运算有括号只有小括号先内后外含有两种括号先小(解小括号)再中(解中括号)后外(解括号外)四则运算应用方法在整数、小数和分数四则混合运算中,应当选择最合理、最简便的方法进行运算课题:数的运算复习内容(4)——文字题知识要点文字题根据数与数之间的关系,抓住叙述中的关键词语,列出算式,并能够正确计算课题:代数的初步知识复习内容(1)——用字母表示数知识要点1、用字母表示数意义用字母表示数是代数的基本特点。既简单明了,又能表达数量关系的一般规律。用字母表示数的作用1、用字母代表任何数:例:小红今年a岁,妈妈比她大24岁,妈妈的年龄可以表示为(a+24)岁2、用字母表示常见的数量关系:例:路程、时间、速度表示为s=vt,v=s÷t,t=s÷v、3、用字母表示运算定律和性质例;加法交换律a+b=b+a加法结合律(a+b)+c=a+(b+c)4、用字母表示计算公式、计算法则例:圆的周长:c=2∏r或c=∏d圆的面积:s=∏r2用字母表示数的注意事项1、数字与字母、字母和字母相乘时,乘号可以简写成“?“或省略不写。数与数相乘,乘号不能省略。2、当1和任何字母相乘时,“1”省略不写。3、数字和字母相乘时,将数字写在字母前面。含有字母的识字及求值求含有字母的式子的值或利用公式求值,应注意书写格式课题:代数的初步知识复习内容(2)——简易方程知识要点等式与方程表示相等关系的式子叫等式。含有未知数的等式叫方程。判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式。所以,方程一定是等式,但等式不一定是方程。方程的解和解方程使方程左右两边相等的未知数的值,叫方程的解。求方程的解的过程叫解方程。简易方程的解法加数+加数=和一个加数=和-另一个加数被减数-减数=差减数=被减数-差被减数=差+减数被乘数×乘数=积一个因数=积÷另一个因数被除数÷除数=商除数=被除数÷商被除数=除数×商课题:代数的初步知识一、比和比例的意义与性质比和比例意义表示两个数相除表示两个比相等的式子基本性质前项和后项都乘以或除以相同的数(0除外)比值不变两个外项的积等于两个内项的积二、比、分数与除法的关系比“:”比号前项后项比值分数“——”分数线分子分母分数值除法“÷”除号被除数除数商三、求比值和化简比的区别和联系意义方法结果求比值前项除以后项所得的商用前项除以后项一个数(整数、小数、分数)化简比把两个数的比化成最简单的整数比前项和后项同时乘以或除以同一个数(0除外)一个比(前项和后项)四、正比例和反比例的区别和联系相同点不同点特征关系式正比例关系两种相关联的量,一种量变化,另一种量也随着变化两种量相对应的两个数比值一定Y/x=k(一定)反比例关系两种量相对应的两个数乘积一定Xy=k(一定)五、比例尺图上距离和实际距离的比叫做这幅图的比例尺。即:图上距离:实际距离=比例尺。通常把比例尺写成前项是1的比。课题:代数的初步知识复习内容(4)——比和比例应用题知识要点按比例分配在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”。解题策略按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答正、反比例应用题的解题策略1、审题,找出题中相关联的两个量2、分析,判断题中相关联的两个量是成正比例关系还是成反比例关系。3、设未知数,列比例式4、解比例式5、检验,写答语课题:应用题复习内容(1)——简单应用题和复合应用题知识要点简单应用题由两个已知条件和一个问题组成的应用题,叫简单应用题。它是复合应用题的基础,解答时要依据四则运算的定义,求其和、差、积、商复合应用题1、复合应用题是由两个或两个以上的简单应用题组成的,因而它的数量关系,也比较复杂,必须通过两步或两步以上的运算才能解答。2、解答复合应用题时,常用的思考方法有“分析法”和“综合法”3、分析法是从应用题要求的问题出发,运用要求一个问题必须具备两个条件的知识,逐步推到已知条件上,即“探果索因”的思路。4、综合法则是从已知条件出发,逐步推到问题的解决,即“由因寻果”的思路但在解题时,往往两种方法并用,即采用