六年级数学下册复习要点

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

苏教版六年级下册知识点解析讲义第一单元百分数的应用知识点一、“求一个数比另一个数多(少)百分之几?”的实际问题分解题目:已知条件:一个数、另一个数;求:两数差的百分数解题方法:(大数-小数)÷单位“1”在这里,对“一个数”、“另一个数”进行比较,哪一个大就是“大数”,另外一个就是“小数”。例1:东山村去年原计划造林16公顷,实际造林20公顷。实际造林比原计划多百分之几?解析:从题目“实际造林比原计划多百分之几”中,可以看出“一个数”指“实际造林”,“另一个数”指“原计划造林”,单位“1”指“原计划造林”;又因为“实际造林”的数量比“原计划”要大,因此“实际造林”是“大数”,而“原计划”是“小数”。根据公式可以得到:(实际造林-原计划造林)÷原计划造林,即(20-16)÷16=25%答:实际造林比原计划多25%。例2:东山村去年原计划造林16公顷,实际造林20公顷。原计划造林比实际少百分之几?解析:从题目“实际造林比原计划多百分之几”中,可以看出“一个数”指“原计划造林”,“另一个数”指“实际造林”,单位“1”指“实际造林”;又因为“实际造林”的数量比“原计划”要大,因此“实际造林”是“大数”,而“原计划”是“小数”。根据公式可以得到:(实际造林-原计划造林)÷实际造林,即(20-16)÷20=20%答:实际造林比原计划少20%。知识点二、“一个数比另一个数多(少)百分之几,求一个数是多少?”的实际问题分解题目:已知条件:另一个数、两数和(差)的百分数求:一个数(非单位“1”)解题方法:另一个数×(1+百分数)——两数和的方法另一个数×(1-百分数)——两数差的方法例1:东山村去年原计划造林16公顷,实际造林比原计划多25%,实际造林多少公顷?解析:从题目“实际造林比原计划多25%”中,可以看出“一个数”是“实际造林”,“另一个数”是“原计划造林”,“两数和的百分数”是“25%”。根据公式可以得到:另一个数×(1+百分数)即16×(1+25%)=20(公顷)答:实际造林20公顷。例2:东山村去年实际造林20公顷,原计划造林比实际少20%,原计划造林多少公顷?解析:从题目“原计划造林比实际少20%”中,可以看出“一个数”是“原计划造林”,“另一个数”是“实际造林”,“两数差的百分数”是“20%”。根据公式可以得到:另一个数×(1-百分数)即20×(1-20%)=16(公顷)答:原计划造林16公顷。知识点三、“一个数比另一个数多(少)百分之几,求另一个数是多少?”分解题目:已知条件:一个数、两数和(差)的百分数求:另一个数(单位“1”)解题方法:一个数÷(1+百分数)——两数和的方法一个数÷(1-百分数)——两数差的方法例1:东山村去年原计划造林16公顷,比实际造林少20%,实际造林多少公顷?解析:从题目“比实际造林多25%”中,可以看出“一个数”是“原计划造林”,在“比”之前省略了,“另一个数”是“实际造林”,“两数差的百分数”是“20%”。根据公式可以得到:一个数÷(1-百分数)即16÷(1-20%)=20(公顷)答:实际造林20公顷。例2:东山村去年实际造林20公顷,比原计划多25%,原计划造林多少公顷?解析:从题目“比原计划多25%”中,可以看出“一个数”是“实际造林”,在“比”之前省略了,“另一个数”是“原计划造林”,“两数和的百分数”是“25%”。根据公式可以得到:一个数÷(1+百分数)即20÷(1+25%)=16(公顷)答:原计划造林16公顷。知识点四、应纳税额的计算方法分解题目:求应纳税额实际上就是求一个数的百分之几是多少,用乘法计算。解题方法:应纳税额=收入额×税率例1:星光书店去年十二月份的营业额是60万元。如果按营业额的5%缴纳营业税,这个书店去年十二月份应缴纳营业税多少万元?解析:从题目“按营业额的5%缴纳营业税”中,可以得到“营业税”是“应纳税额”,“营业额”是“收入税”,5%是“税率”,根据公式可以得到:收入额×税率=应纳税额,即60×5%=3(万元)答:应缴纳营业税3万元。知识点五、利息的计算方法名词解释:①本金:存入银行的钱。②利息(应得利息):取款时银行除还给本金外,另外付给的钱。③利率:利息占本金的百分率。按年计算的叫做年利率;按月计算的叫做月利率。④利息税:利息所征收的个人所得税,一般是利息税率的5%。⑤纯利息/实得利息:扣除利息税后的利息。解题方法:①利息=本金×利率×时间②纯利息=利息×(1-5%)=本金×利率×时间×95%或者=利息-利息税例1:2007年8月20日,一年定期存款的年利率是3.87%。李爷爷把50000元存入银行,一年以后按5%缴纳利息税,应缴纳利息税多少元?解析:本题求利息税。题目中已知利息税率5%,还告诉了本金、年利率和存款时间,所以根据公式:应缴纳利息税=利息×利息税率=本金×年利率×存款时间×利息税率50000×3.87%×1×5%=96.75元答:应缴纳利息税96.75元。知识点六、折扣(成数)计算方法名词解释:①折扣:商店经常把商品减价,按原价的百分之几出售,通常称为打折出售,简称为折扣。②折扣与百分数的关系:打几折就是按原价的百分之几出售或说降价了(1-百分之几)出售。③标价:商品摆放柜台出售的价格,包括成本和利润两部分。④售价:商品的成交价格。售价经常等于或小于标价。⑤成数:表示一个数是另一个数十分之几的数。通常用在工农生产中表示生产的增长状况。几成就是十分之几。“二成”就是十分之二,就是百分之二十。⑥利润率:利润占成本的百分率。解题方法:①售价(现价)=标价(原价)×折扣折扣=售价(现价)÷标价(原价)标价(原价)=售价(现价)÷折扣②利润率=利润÷成本例1:一本书原价是30元,现在明明少花9元买到这本书,现在这本书打几折销售?解析:本题求折扣,就要知道现价和原价。原价是30元,现价是30-9=21元。根据公式:折扣=现价÷原价,即21÷30=70%=七折答:现在这本书打七折销售。知识点七、列方程解决稍复杂的百分数实际问题的解题方法步骤:①审题:1,读懂题;2,列出等量关系式②设未知数,列方程③解方程,检验并写答。解题方法:本单元的应用题一般设单位“1”为未知数。例1:一个机械加工厂,十月份生产零件2000个,比原计划多生产25%,多生产多少个零件?解析:本题中的单位“1”是原计划生产的零件,所以十月份生产零件比原计划多25%x个。等量关系:原计划生产的零件+比原计划多生产的零件=十月份生产的零件设:原计划生产零件x个。X+25%X=2000X=16001600×25%=400个答:多生产400个零件。第二单元圆柱和圆锥知识点一、圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。上下底面是两个完全相同的圆形;侧面是一个曲面。②圆柱的高:上下底面之间的距离。圆柱有无数条高,每条高相等。③圆锥由一个底面和一个侧面组成。底面是一个圆形;侧面是一个曲面。④圆锥的高:圆锥的顶点到底面圆心的距离。圆锥只有一条高。知识点二、圆柱侧面积的计算方法理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。长方形的面积S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。正方形的面积S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh例1:一种圆柱形的罐头,它的底面直径是11厘米,高是15厘米。侧面有一张商标纸,商标纸的面积大约是多少平方厘米?解析:本题中已知直径、高,所以可以根据公式得:圆柱形的侧面积:πdh=3.14×11×15=518.1平方厘米答:商标纸的面积大约是518.1平方厘米。知识点三、圆柱表面积的计算方法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2=2πrh+2πr2用乘法分配率得圆柱的表面积公式S表=2π(rh+r2)例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮?解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相等,都等于12.56厘米,可以根据圆的周长公式C=2πr,把r先求出,最后再用圆柱的表面积公式。解:12.56÷3.14÷2=2厘米S表=2×π×(2×12.56+22)=182.8736(平方厘米)答:做一个这样的罐头盒需要182.8736平方厘米铁皮。知识点四、圆柱体积的计算方法理解掌握:利用我们以前学过的长方体的体积公式V长方体=S底×h,可以得到圆柱的体积公式V圆柱=S底×h,长方体的底面是长方形或正方形,而圆柱的底面是圆。相关公式:①已知半径和高,V圆柱=πr2h②已知直径和高,V圆柱=π(d÷2)2h③已知周长和高,V圆柱=π(C÷2π)2h难点解析:把圆柱的底面平均分成n份,切开后拼成一个近似的长方体。得到的结论:圆柱的底面周长等于长方体的两条长的和;圆柱的半径等于长方体的宽;圆柱的高等于长方体的高;圆柱的体积等于长方体的体积;★圆柱的侧面=长方体的前、后两个面积的和(长×高);圆柱的上、下底面和等于长方体的上、下底面和(长×宽),所以圆柱的表面积比长方体的表面积少左右两个侧面(宽×高)。例1:一个圆柱的底面半径是5厘米,高是20厘米,求圆柱的体积是多少?解析:根据题目中的条件,可以用公式V圆柱=πr2h。3.14×52×20=1570立方厘米答:圆柱的体积是1570立方厘米。知识点五、圆锥体积的计算方法理解掌握:根据书本上的实验可以得到结论:等底等高的圆柱和圆锥,圆柱的体积是圆锥的3倍,或者说圆锥的体积是圆柱的三分之一。V圆锥=1/3V圆柱。相关公式:只需要在圆柱的相关公式前面乘以三分之一。①已知半径和高,V圆锥=1/3πr2h②已知直径和高,V圆锥=1/3π(d÷2)2h③已知周长和高,V圆锥=1/3π(C÷2π)2h重点解析:在一个圆柱里面挖一个最大的圆锥,圆锥的体积和剩余部分的体积比是1:2。例1:工地上的沙堆成近似的圆锥形,底面周长是12.56米,高是1.5米,每立方米沙子约重1.7吨,这堆沙子共重多少吨?解析:根据题目中的条件,可以用公式V圆锥=1/3π(C÷2π)2h1/3×3.14×(12.56÷2÷3.14)2×1.5=6.28立方米6.28×1.7=10.676吨答:这堆沙子共重10.676吨。知识点六、(拓展内容)圆锥的表面积计算方法理解掌握:圆锥的表面积由一个侧面和一个底面组成,侧面的展开图是一个扇形,底面是一个圆。用字母表示为:S圆锥=S扇形+S底。在这里我们来了解一下扇形的面积是怎么计算的:扇形是圆的一部分,我们可以理解为扇形的面积是占圆面积的几分之几的面积,跟扇形的圆心角度数有关,度数越大,扇形面积越大,反之面积越小。假设扇形圆心角的度数为n度,那么扇形的面积与圆面积的比为n:360,所以扇形的面积公式为:S扇形=n/360×S圆=n/360×πR2=(πnR2)/360再此,圆锥的表面积公式:S圆锥=S扇形+S底=(πnR2)/360+πr2(R是侧面积的圆的半径,r是底面圆的半径)例1:一个扇形的圆心角度数为90°半径为2厘米,求围成圆锥的表面积是多少平方厘米?解析:要算出圆锥表面积,根据公式,一定要知道侧面积的圆心角度数、半径和底面半径。所以围绕这三个要素进行解题。由侧面半径可以计算出侧面圆的周长,进而算出扇形的弧长(等于底面圆的周长),再由弧长(等于底面圆的周长)算出底面的半径,再根据圆锥的表面积公式可以算出。2×3.14×2=12.56厘米------侧面圆的周长12.56×(90÷360)=3.14厘米------扇形的弧长占侧面圆的周长的四分之一,也就是底面圆的周长3.14÷3.14÷2=0.5厘米------底面圆的半径(3.14×90×22)÷

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功