1处理共点力平衡问题的常见方法和技巧物体所受各力的作用线(或其反向延长线)能交于一点,且物体处于静止状态或匀速直线运动状态,则称为共点力作用下物体的平衡。它是静力学中最常见的问题,下面主要介绍处理共点力作用下物体平衡问题的一些思维方法。1.解三个共点力作用下物体平衡问题的方法解三个共点力作用下物体平衡问题的常用方法有以下五种:(1)力的合成、分解法:对于三力平衡问题,一般可根据“任意两个力的合成与第三个力等大反向”的关系,即利用平衡条件的“等值、反向”原理解答。例1.如图1所示,一小球在纸面内来回振动,当绳OA和OB拉力相等时,摆线与竖直方向的夹角为:()图1A.15°B.30°C.45°D.60°解析:对O点进行受力分析,O点受到OA绳和OB绳的拉力FA和FB及小球通过绳子对O点的拉力F三个力的作用,在这三个力的作用下O点处于平衡状态,由“等值、反向”原理得,FA和FB的合力F合与F是等值反向的,由平行四边形定则,作出FA和FB的合力F合,如图2所示,由图可知,故答案是A。图2(2)矢量三角形法:物体受同一平面内三个互不平行的力作用平衡时,这三个力的矢量箭头首尾相接,构成一个矢量三角形;反之,若三个力矢量箭头首尾相接恰好构成三角形,则这三个力的合成必为零,因此可利用三角形法,求得未知力。2例2.图3中重物的质量为m,轻细线AO和BO的A、B端是固定的。平衡时AO是水平的,BO与水平面的夹角为。AO的拉力和BO的拉力的大小是:()图3A.B.C.D.解析:因结点O受三力作用而平衡,且与mg垂直,所以三力应组成一个封闭的直角三角形,如图4所示,由直角三角形知识得:,所以选项B、D正确。图4(3)正弦定理法:三力平衡时,三个力可构成一封闭三角形,若由题设条件寻找到角度关系,则可用正弦定理列式求解。例3.如图5(a)所示,质量为m的物体用一轻绳挂在水平轻杆BC的C端,B端用铰链连接,C点由轻绳AC系住,已知AC、BC夹角为,则轻绳AC上的张力和轻杆BC上的压力大小分别为多少?图53解析:选C点为研究对象,受力情况如图5(b)所示,由平衡条件和正弦定理可得即得和所以由牛顿第三定律知,轻绳AC上的张力大小为,轻杆BC上的压力大小为。(4)三力汇交原理:如果一个物体受到三个不平行外力的作用而平衡,这三个力的作用线必在同一平面上,而且必为共点力。例4.如图6所示,两光滑板AO、BO与水平面夹角都是60°,一轻质细杆水平放在其间,用竖直向下的力F作用在轻杆中间,杆对两板的压力大小为____________。图6解析:选轻杆为研究对象,其受三个力而平衡,因此这三力必为共点力(汇交于O”),作出受力分析如图7所示。图7由图可知,FTA与FTB对称分布,所以,且这两力的夹角为120°,其合力F”应与F相等,以FTA,FTB为邻边构成的平行四边形为菱形,其性质为对角线垂直且平分,根据三角形知识,有又因为所以42.解多个共点力作用下物体平衡问题的方法多个共点力作用下物体的平衡问题,常采用正交分解法。可将各力分别分解到x轴上和y轴上,运用两坐标轴上的合力等于零的条件,即、求解。值得注意的是,对x、y方向选择时,要尽可能使落在x、y轴上的力多,且被分解的力尽可能是已知力,不宜分解待求力。例5.在机械设计中亦常用到下面的力学原理,如图8所示,只要使连杆AB与滑块m所在平面间的夹角大于某个值,那么,无论连杆AB对滑块施加多大的作用力,都不可能使之滑动,且连杆AB对滑块施加的作用力越大,滑块就越稳定,工程力学上称之为“自锁”现象。为使滑块能“自锁”,应满足什么条件?(设滑块与所在平面间的动摩擦因数为)图8解析:滑块m的受力分析如图9所示,将力F分别在水平和竖直两个方向分解,则:图9在竖直方向上在水平方向上由以上两式得因为力F可以很大,所以上式可以写成故应满足的条件为53.研究对象的灵活选择–––整体法与隔离法用整体法还是用隔离法,其实质就是如何合理选取研究对象,使受力分析和解题过程简化。对一个较为复杂的问题,两者应灵活选用、有机结合,才能到达迅速求解的目的。例6.在粗糙水平面上有一个三角形的木块,在它的两个粗糙斜面上分别放有两个质量m1和m2的小木块,,如图10所示,已知三角形木块和两个小木块都是静止的,则粗糙水平面对三角形木块()图10A.有摩擦力的作用,摩擦力的方向水平向右;B.有摩擦力的作用,摩擦力的方向水平向左;C.有摩擦力的作用,但摩擦力的方向不能确定,因m1、m2和、的数值并未给出;D.以上结论都不对。解析:因为三角形木块和两个小木块都静止,所以可将三者看成一个整体如图11所示,其在竖直方向受重力和水平面的支持力,合力为零。在水平方向没有受其他力的作用,所以整体在水平方向上没有相对水平面的运动趋势,因此粗糙水平面对三角形木块没有静摩擦力。图11例7.如图12所示,两块相同的竖直木板之间有质量均为m的四块相同的砖,用两个大小为F的水平压力压木板,使砖块静止不动。设所有接触面均粗糙,则第3块砖对第2块砖的摩擦力为()图12A.0B.C.mgD.2mg6解析:将4块砖为整体进行受力分析如图13所示,可知两侧木板对砖的静摩擦力均为竖直向上,且大小为2mg;再把第1、2两块砖为整体进行受力分析如图14所示,由图可知木板对砖的静摩擦力与砖的重力2mg是一对平衡力,这表明第3块与第2块砖之间没有静摩擦力。所以选项A正确。4.求共点力作用下物体平衡的极值问题的方法共点力作用下物体平衡的极值问题是指研究平衡问题中某个力变化时出现的最大值或最小值,处理这类问题常用解析法和图解法。例8.如图15所示,物体的质量为2kg,两根轻细绳AB和AC的一端连接于竖直墙上,另一端系于物体上,且AC绳水平时,两绳所成角为。在物体上另施加一个方向与水平线成的拉力F,若要使绳都能伸直,求拉力F的大小范围。图15解析:作出A受力示意图,并建立直角坐标如图16所示,由平衡条件有:图16由以上两式得7①及②要使两绳都能绷直,需有③④由①③两式得F有最大值由②④两式得F有最小值综合得F的取值范围为例9.重量为G的木块与水平地面间的动摩擦因数为,一人欲用最小的作用力F使木块做匀速运动,则此最小作用力的大小和方向应如何?解析:由于,所以不论FN如何改变,与FN的合力F1的方向都不会发生变化,如图17(甲)所示,合力F1与竖直方向的夹角一定为。由木块做匀速运动可知F、F1和G三力平衡,且构成一个封闭三角形,当改变F的方向时,F和F1的大小都会发生改变,由图17(乙)知,当F和F1的方向垂直时F最小。故由图中几何关系得。图175.共点力平衡问题中的“变”与“不变”物体在共点力作用下处于平衡状态时,即使在一些量变的过程中某些本质并不变。因此寻找变化中保持不变的部分,乃是解决平衡问题的一种重要方法。8例10.三个相同的支座上分别搁着三个质量和直径都相等的光滑圆球a、b、c,支点P、Q在同一水平面上,a球的重心位于球心,b球和c球的重心、分别位于球心的正上方和球心的正下方,如图18所示,三球均处于平衡状态,支点P对a球的弹力为,对b球和c球的弹力分别为、,则()图18A.B.C.D.解析:本题的干扰因素是三个球的重心在竖直方向的位置发生了变化(a在球心、b在球心之上、c在球心之下)。但是三个球的质量和直径都相等,重力方向均竖直向下,而且支点的支持力方向也完全相同,所以它们受力情况完全相同,支持力大小也必然相同,所以选项A正确。评析:在变化中求不变的思想是最普遍的物理思想,本题中圆球重心的高度虽然发生了变化,但问题的本质––––圆球的受力情况并不变化,所以支点P对三球的弹力应相同。(一)平衡状态一个物体在共点力作用下,如果保持静止或匀速直线运动,则这个物体就处于平衡状态。如光滑水平面上匀速直线滑动的物块、沿斜面匀速直线下滑的木箱、天花板上悬挂的吊灯等,这些物体都处于平衡状态。注意:①物体处于平衡状态时分为两类:一类是共点力作用下物体的平衡;另一类是有固定转动轴物体的平衡。在这一节我们只研究共点力作用下物体的平衡。共点力作用下物体的平衡又分为两种情形,即静平衡(物体静止)和动平衡(物体做匀速直线运动)。②对静止的理解:静止与速度v=0不是一回事。物体保持静止状态,说明v=0,a=0,两者同时成立。若仅是v=0,a≠0,如上抛到最高点的物体,此时物体并不能保持静止,上抛到最高点的物体并非处于平衡状态。所以平衡状态是指加速度为零的状态,而不是速度为零的状态。(二)共点力作用下的平衡条件处于平衡状态的物体,其加速度a=0,由牛顿第二定律F=ma知,物体所受合外力F合=0,即共点力作用下物体处于平衡状态的力学特点是所受合外力F合=0。例如下左图所示中,放在水平地面上的物体保持静止,则所受重力和支持力是一对平衡力,其合力为零。又如上右图所示中,若物体沿斜面匀速下滑,则F与FN的合力必与重力G等大反向,9故仍有F合=0。注意:(1)若物体在两个力同时作用下处于平衡状态,则这两个力大小相等、方向相反,且作用在同一直线上,其合力为零,这就是初中学过的二力平衡。(2)若物体在三个非平行力同时作用下处于平衡状态,这三个力必定共面共点(三力汇交原理),合力为零,称为三个共点力的平衡,其中任意两个力的合力必定与第三个力大小相等,方向相反,作用在同一直线上。(3)物体在n个非平行力同时作用下处于平衡状态时,n个力必定共面共点,合力为零,称为n个共点力的平衡,其中任意(n-1)个力的合力必定与第n个力等大反向,作用在同一直线上。由牛顿第二定律知道,作用于物体上力的平衡是物体处于平衡状态的原因,物体处于平衡状态是力的平衡的结果。(三)共点力平衡条件的应用注意:(1)在共点力作用下物体处于平衡状态,则物体所受合力为零,因此物体在任一方向上的合力都为零。(2)如果物体只是在某一方向上处于平衡状态,则该方向上合力为零,因此可以在该方向上应用平衡条件列方程求解。1、求解共点力作用下物体平衡的方法(1)解三角形法:这种方法主要用来解决三力平衡问题。根据平衡条件并结合力的合成或分解的方法,把三个平衡力转化为三角形的三条边,然后通过解这一三角形求解平衡问题。解三角形多数情况是解直角三角形,如果力的三形角并不是直角三角形,能转化为直角三角形的尽量转化为直角三角形,如利用菱形的对角线相互垂直的特点就得到了直角三角形,确实不能转化为直角三角形时,可利用力的三角形与空间几何三角形的相似等规律求解。(2)正交分解法:正交分解法在处理四力或四力以上的平衡问题时非常方便。将物体所受各个力均在两互相垂直的方向上分解,然后分别在这两个方向上列方程,此时平衡条件可表示为注意:应用正交分解法解题的优点①将矢量运算转变为代数运算,使难度降低;②将求合力的复杂的解三角形问题,转化为正交分解后的直角三角形问题,使运算简便易行;③当所求问题有两个未知条件时,可列出两个方程,通过对方程组求解,使得求解过程更方便。2、解共点力平衡问题的一般步骤(1)选取研究对象;(2)对所选取的研究对象进行受力分析,并画出受力示意图;(3)对研究对象所受的力进行处理。一般情况下需要建立合适的直角坐标系,对各力按坐标轴进行正交分解;(4)建立平衡方程。若各力作用在同一直线上,可直接用F合=0的代数式列方程,若几个力不在同一直线上,可用Fx合=0与Fy合=0联立列方程组;(5)利用方程组求解,必要时需对解进行讨论。10注意:建立直角坐标系时,一般尽量使更多的力落在坐标轴上,以减少分解力的个数,从而达到简化计算的目的。