工程电磁场与电磁波-丁君版-答案第四章习题答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

第四章习题4-1解:选柱坐标系,在所求无源区内电位函数满足:02只和r相关00z方程化为0)(1rrrr21lnCrC为常数21,CC由006.0时r501.0时 r得88.27588.9721CC88.275ln88.97rrarEˆ188.974—2:解:R2R1U0图一根据边界条件:021RRRRU0可得:00URRRBURRRRA1211221120112021RRURRRRURR(2)RRaRRRURRaREˆ1ˆ212021(1)如图一,根据题意可知:电位函数满足拉普拉斯方程。采用球坐标系:0200R相关 只于 ,方程化为:0)(122RRRR积分得:BRA1(3)RRRaRRRUREDˆ12102001内表SSdDsS内表SSDs内表)(12102RRRURDs内表4—3:解:选择直角坐标如图,由恒定电场的泊松方程可得:U0ρxyzod设两板间距离为d,代入边界条件000Udzz22002012ddUddUCC)2()2(2002ddUzEzddUz4—4:解:选择柱坐标系,根据恒定电磁场的拉普拉斯方程,(1)02m,m只在方向上有变化,所以:BArmm:,01222积分得由0时:0,0Bm得AmlmmadldHldHdm2020IldHdm0,0,2xy方程可化为:,22z2122:CzCz积分得BAImm代入,22AI2IA2Im(2)arIaddradldHmlmm21可见,利用拉普拉斯方程与安培环路定理求出来的结果一样。4-5解:选择柱坐标系,设电流为zaˆ方向R2R1CJA02zCCaJJˆ)(212202RRIAz由BA而B只有aˆ方向的分量故zA只和r相关00zAAzz)()(121220RRIrArrrz21212220ln)(4CrCRRrIAzzaCrCRRrIAˆ)ln)(4(21212220由A的连续性:(1)a.1Rr的无源区中00Amb.21RrR时,所求区域为有源区CJ0故m无意义0011RrzRrzrAA121222102122210221222101ln)(2)(4)(2RRRIRRRIRCRRIRCc.2Rr时02m由Hm可知m只与相关01222mr21CCm0时0m故02C2时Im21IC2Im02AA只有zaˆ方向分量,只和r相关0)(1rArrrz'2'1lnCrCAzzaCrCAˆ)ln('2'1由A得连续性,从21RrR区域A可得121222102122210221222102122220ln)(2)(4ln)(2)(42RRRIRRRIRRRRIRRRIRARrz)ln(ln)(241221222100RRRRIR)()(21)(2)(2222121220221222102122202RRRRRIRRRIRRRIRrARrz所以20'1IC2012212221001'2ln2)ln(ln)(24RIRRRRIRC2)1Rr时00BH21RrR时BAarRRRrIarABz)()(22122212arRRRrIH)(2)(2122212IldHrRRRrIrH)(2)(22122212得:arRRRrIH)(2)(21222122Rr时rIrAABz20arIH2IldHIrH2arIH2由此可见。两种方法求得的H、B相同4-6解xyzABQ-QCdrBCrˆACrˆ(0,0.2,0.2)(0.3,0.2,0)其中08.0)4.02.0(2.0222ACRzyACaarˆ22ˆ22ˆ,4.0)4.02.0(2.0222BCR,zyBCaarˆ10103ˆ1010ˆ610)ˆ27.9ˆ79.13(zyaaD4—7:解:1)2322)(2drdqS=62322261036.4)4.04.03.0(24.010182)201021EEDDDBCBCACACrRQrRQˆ4ˆ42020qqoyxxyqqq’q’oP(1)利用镜像法qq'0x的空间中22222222)1()2(1)1()2(1)1()2(1)1()2(14yxyxyxyxqo在导体表面只存在法向场,所以:xE2322232223222322)1()2()2()1()2()2()1()2()2()1()2()2(4yxxyxxyxxyxxqoxosE2322232223222322)1()2()2()1()2()2()1()2()2()1()2()2(4yxxyxxyxxyxxqs23)0,0,0(52qsq552(2)shP的)0,,0(232232)0,,0()1(4)1(4hqhqhs4-8解:NmgG33106.198.910220216hqF要使得FG则:mghq20216Cq83229109.5106.19)102(10361164—9:解:利用镜像法可知IIIoo'hμ0μμ0μ0II’φφ’rr’HH1H’I+I”μμΦ”H2yxII’rr’hμ0φφ’μ0B1B2I+I”r”Φ”μB2μP(x,y,z)P(x,y,z)图一图二如图一所示:上半空间中1''ˆˆ22'IIHaarr如图二所示:下半空间2''''ˆ2''IIHar故在上半空间中:10101tnBHHnotarIrIarIrIˆ2coscos2ˆ2sinsin20000000notarrIarrIˆcoscos2ˆsinsin20000000在直角坐标系下找出P(x,y,z)与',,',rr的关系,yxII’rr’hμ0φφ’μ0B1B2I+I”r”Φ”μB2μP(x,y,z)P(x,y,z)图一图二222)(yhxr,222)(yhxrrhxsin''sinrhxˆˆˆˆ,nxtyaaaa即为即为rycos,rycos下半空间中ntBHB222ntarIarIIˆcos)1(2ˆsin20000ntarIarIˆcosˆsin000222yhxrrhxsinrycos4-10解:1)0z时Pr2q’r1q(0,0,h)(0,0,-h)qq2121=qrr0000=qrr11201044rqrq=2222220111141hzyxhzyxrrxrrahzyxxhzyxxEˆ1141232222322202322223222ˆ12hzyxhzahzyxyyrzrrahzyxhzˆ11232222)0z时Pr(0,0,h)q+q’’ε0εrqq2121''=qrr11rqqr0''4=2220)(411hzyxqqrrr=2220)(2)1(hzyxqrryxrrahzyxyahzyxxqEˆ))((ˆ))((()1(223222232220zahzyxhzˆ))((232224—11:解:要求导体上半空间的位函数(用镜像法)PQr1r2r3r4dba1q2q3qxyz(1)根据镜像法)(0,0,,21daQdaq位于),0,0(,22daQdaq位于),0,0(,3dQq位于P点到321,,,qqqQ的距离为:2221)(dzyxr22222)(dazyxr22223)(dazyxr2224)(dzyxr2122221222221222221222043210])([])([4)1111(4dzyxdazyxdadazyxdadzyxQrrdardarQ由E得:2322223222222322222232220])()[(])()[(4dzyxdzdazyxdazdadazyxdazdadzyxdzQEz平面上的面电荷密度:232422232322223222232422232324222323222001)(2)()(4dayxdadyxdQdyxddayxdadayxdadyxdQEDzznS平面上的)(22023242232322201aaSrdrddardadrQrdrdq)1(22)(222221242232122dadaQdardadrQa球面上的电荷2222212221dadadaQqQq2)面电荷密度在平面上401QDDzznS4—12:解:(镜像法)由题意可将球体对q的吸引力转换为镜像电荷,'qq对q的吸引力。bmRq'q''q4-13.解:(1)利用叠加原理,设圆柱内只有l,则利用镜像法,ll且bad2时,2101l

1 / 24
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功