八年级数学下册17.1.1分式及其基本性质(第1课时)教案华东师大版

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

用心爱心专心分式及其基本性质(1)知识技能目标1.使学生理解分式的概念,能正确判断一个代数式是否为分式,分清分式和整式的区别,了解有理式的概念;2.理解并掌握判断一个分式有意义、无意义及值为零的方法;3.使学生理解分式的基本性质.通过对比分数和分式基本性质的异同点,渗透类比的思想方法,学会用运动、变化的观点分析问题.过程性目标1.让学生在判断和识别整式与分式的实践过程中,理解并掌握分式的概念.2.让学生体会从分数变化到分式的运动过程,从中感悟类比的思想方法.情感态度目标通过学生比较熟悉的分数入手进行教学,降低教学难度,提高学生的学习兴趣,培养学生类比与比较的思维能力.重点和难点重点:分式的概念.难点:一个代数式不是不分式的判断.教学过程一、创设情境做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为米;(2)面积为S平方米的长方形一边长a米,则它的另一边长为米;(3)已知正方形的周长是acm,则一边的长是____cm,面积是____cm2;(4)一箱苹果售价p元,总重m千克,箱重n千克.则每千克苹果的售价是元.想一想两个数相除,不能整除时结果可用分数表示.当两个整式不能整除时,它们的商怎样表示呢?二、探究归纳1.分式的概念问在上面所列出的代数式中,哪些是整式?哪些不是?同于前面学过的整式,是两个分母含有字母的代数式.在实际应用中,某些数量关系只用整式来表示是不够的,我们需要学习新的式子,以满足解决实际问题的需求.我们称这两个代数式为分式.用心爱心专心其中A叫做分式的分子(numerator),B叫做分式的分母(denominator).从分式的意义中,应注意以下三点:(1)分式是两个整式相除的商,分数线可以理解为除号,并含有括号的作用;(2)分式的分子可以含有字母,也可以不含有字母,但分母必须含有字母;(3)分式分母的值不能为零.如果分母的值为零,那么分式就无意义.整式和分式统称为有理式(rationalexpression),即分式是有理式的一部分.在有理式中可以包含加、减、乘、除四种运算,但在整式中除式不能含有字母.例1下列各式中,哪些是整式?哪些是分式?解属于整式的有:(2)、(4);属于分式的有:(1)、(3).想一想识别一个有理式是分式还是整式的关键是什么?关键是观察分母是否含有字母.如果分母不含字母,就是整式;如果分母含有字母,就是分式,与分子是否含字母无关.2.分式的基本性质回忆分数的基本性质是什么?分数的分子与分母都乘以(或除以)同一个不等于零的数,分数的值不变.分式和分数也有类似的性质.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.想一想分数的基本性质与分式的基本性质有什么区别?在分数的基本性质中,分子与分母是都乘以(或除以)同一个不等于零的数,分数的值不变,这个“数”是一个具体的、唯一确定的值;而在分式的基本性质中,分式的分子与分母则是都乘以(或除以)同一个不等于零的整式,分式的值不变,“整式”的值是随整式中字母的取值不同而变化的,所以它的值是变化的.从分数到分式是把“数”引伸到“式”.分数是分式的特殊情形,即当分式的分子和分母均为数,并且分母是不等于零的数,就成为分数.三、实践应用例2当x取什么值时,下列分式有意义?分析分式有意义的条件是分母的值不能等于零,从此条件出发可以考虑分式何时无意义,从而确定x的值.解(1)当分式的分母x-2=0时,这个分式无意义,用心爱心专心(2)分式的分母4x+1=0时,这个分式无意义,例4下列等式的右边是怎样从左边得到的?问请同学观察(1)和(2),等式从左边到右边,分式的分子与分母都经过了怎样的变换?变换后,为什么分式的值不变?答等式(1)的左边分式的分子与分母都乘以不等于零的整式c而得到右边的分式.等式(2)的左边分式的分子与分母都除以不等零的整式x而得到右边的分式.变换后分式的值不变,这是依据分式的基本性质,即分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.注题中所给出的分式,它的分母的值不能等于零,这是隐含条件.试一试填空:例5如果把下列分式中x、y的值均扩大为原来的2倍,分式的值如何变化?分析把x、y变为2x、2y,分别代入原分式计算后再观察变化.用心爱心专心四、交流反思有理式是分式还是整式的关键是观察分母是否含有字母.如果分母不含字母,就是整式;如果分母含有字母,就是分式,与分子是否含字母无关.2.因为分式中的分子与分母都是整式,整式的值是随着式中字母取值的不同而变化,要使分式的值为零,必须使分子的值为零而分母的值不为零.3.在分式的基本性质中,要注意其中的“都”、“同”和“不”等关键词语.“都”是指分式的分子与分母共同乘以(或除以)一个不等于零的整式;“同”是指分式的分子与分母乘以(或除以)的整式必须相同;“不”是指分式的分子与分母乘以(或除以)的整式的值不能等于零.分式的基本性质是分式变形和运算的理论依据.五、检测反馈1.指出下列有理式中,哪些是整式,哪些是分式?2.当x取什么数时,下列分式有意义?3.在下列各分式中,当x等于什么数时,分式的值是零?当x等于什么数时,分式没有意义?4.填空:(1)若某梨园m平方米产梨n千克,则平均每平方米产梨千克;(2)m千克盐溶于n千克水,所得盐水的含盐量是(用分式表示);(3)若工厂原计划a天完成b件产品,若现在需要提前x天完成,则现要每天要比原来多生产产品件;(4)一货车送货上山,上山的速度为x千米/时,下山的速度为y千米/时,则该货车的平均速度是千米/时(用分式表示).5.把下列各有理式分别填入相应的圈内:用心爱心专心6.写出下列各等式中未知的分子或分母:

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功