傅里叶级数

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

傅里叶级数诀窍就在于从“几何”的角度来看待傅里叶级数。当我们把一个周期函数表达成傅里叶级数时,其实我们只是在做一个动作,那就是把函数“投影”到一系列由三角函数构成的“坐标轴”上。1.什么是投影我们先来复习什么是投影吧。考虑一个简单的二维平面的例子。如下图所示,给定两个向量u和v,我们从u的末端出发作到v所在直线的垂线,得到一个跟v同向的新向量p。这个过程就称作u到v所在直线的投影,得到的新向量p就是u沿v方向的分量。图中的系数c是p跟v的比例,也就是u在v轴上的“坐标”。我们可以用尺规作图来完成投影这个动作,问题是:如果给定的向量u和v都是代数形式的,我们怎么用代数的方法求c?我相信只要有基本线性代数知识的同学都可以轻松解决这个问题。我们知道u-cv这个向量是“正交”于v的,用数学语言表达就是(u-cv)Tv=0。我们马上就可以得到c的表达式如下。(1)2.向量在一组正交基上的展开在讲傅里叶级数之前,我们还需引进线性代数中“正交基”的概念。如果这个概念你觉得陌生,就把它想成是互相垂直的“坐标轴”。回到刚才这个例子,如下图所示,现在我们引进一组正交基{v1,v2},那么u可以展开成以下形式(2)从图上来看,(2)式其实说的是我们可以把u“投影”到v1和v2这两个坐标轴上,c1和c2就是u的新“坐标”。问题是:我们怎么求c1和c2呢?你会说,我们可以(2)式两边同时乘以v1或v2,然后利用它们正交的性质来求c1,c2。没错,数学上是这么做的。但是利用之前关于投影的讨论,我们可以直接得出答案,直接利用(1)式就可以得到如下的表达式:(3)3.傅里叶级数的几何意义现在我们已经明白一件事情了:如果想把一个向量在一组正交基上展开,也就是找到这个向量沿每条新“坐标轴”的“坐标”,那么我们只要把它分别投影到每条坐标轴上就好了,也就是把(1)式中的v换成新坐标轴就好了。说了半天,这些东西跟傅里叶级数有什么关系?我们先回忆一下傅里叶级数的表达式。给定一个周期是2l的周期函数f(x),它的傅里叶级数为:(4)其中系数表达式如下:(5)我不喜欢记忆这些公式,有办法可以更好的理解他们来帮助记忆吗?答案是有的,那就是从几何的角度来看。傅里叶告诉我们,f(x)可以用下面这组由无限多个三角函数(包括常数)组成的“正交基”来展开,(6)这里我们需要在广义上来理解“正交”。我们说两个向量,或两个函数之间是正交的,意思是它们的“内积”(innerproduct)为零。“内积”在有限维的“向量空间”中的形式为“点积”(dotproduct)。在无限维的“函数空间”中,对于定义在区间[a,b]上的两个实函数u(x),v(x)来说,它们的内积定义为(7)正交基(6)中的每个函数都可以看做是一条独立的坐标轴,从几何角度来看,傅里叶级数展开其实只是在做一个动作,那就是把函数“投影”到一系列由三角函数构成的“坐标轴”上。上面(5)式中的系数则是函数在每条坐标轴上的坐标。现在的问题是我们不能直接用(1)式来求这些坐标了,因为它只适用于有限维的向量空间。在无限维的函数空间,我们需要把(1)式中分子分母的点积分别替换成(7)式。那么(5)式中的所有系数马上可以轻松的写出:(8)值得注意的是,(8)式中所有积分可以在任意一个长度是2l的区间内进行。也就是说,不管是[-l,l]还是[0,2l],答案都是一样的。有同学会说,老师上课教的是对(4)式两边乘以1,cos(nπx/l),或sin(nπx/l),然后积分,利用这些函数之间的正交性来得到(5)式。这些当然是对的,而且我们应该学会这种推导来加深对正交性的理解。但是在应用上,我更喜欢用几何的角度来看傅里叶级数,把函数看成是无限维的向量,把傅里叶级数跟几何中极其简单的“投影”的概念联系起来,这样学习新知识就变得简单了,而且可以毫无障碍的把公式记住,甚至一辈子都难忘。熟悉傅里叶级数的同学会问,那么对于复数形式的傅里叶级数,我们是否也能用几何投影的观点来看,然后写出级数中的所有系数呢?答案是肯定的。给定一个周期是2l的周期函数f(x),它的傅里叶级数的复数形式为:(9)其中系数表达式如下:(10)这意味着我们用了下面这组“正交基”来展开原函数,(11)我们之前提到了两个函数正交,意思是它们的内积为零。对于定义在区间[a,b]上的两个复函数u(x),v(x)来说,它们的内积定义为(12)其中v加上划线意思是它的共轭。(10)中指数函数里的负号就是因为取了共轭的关系。现在我们同样可以把原函数分别投影到(11)中的每个函数所在的“坐标轴”来求出对应的“坐标”,也就是系数cn:(13)这里我想强调一下这个“正交基”的重要性。在一个有限维的向量空间,给定任何向量都可以被一组基展开,它可以不必是正交的,这个时候展开项中的系数(也就是沿这组基中任一坐标轴的坐标)需要求解一个线性方程组来得到。只有当这组基是正交的时候,这些系数才能从给定向量往各坐标轴上投影得出,也就是(1)式。同样的,在无限维的函数空间,我们可以把一个函数在某个“基”中展开,但是只有在“正交基”中,展开项中的系数才能看成是函数投影的结果。最后做一个总结,不管是向量u还是函数u,他们都可以被一组正交基{vn:n=1,...,N}(有限个向量)或{vn:n=1,...,∞}(无限个函数)展开如下:(14)上式中的cn代表u在vn所在的坐标轴上投影产生的坐标。而(14)式中内积的定义视情况而定,在有限维的向量空间(实数域),向量u和v的内积是点积uTv;在无限维的函数空间,函数u(x)和v(x)的内积的通用形式是(12),如果它们是实函数,那么(12)就可以简化成(7)的形式。我们可以看到,用几何投影的观点来看待傅里叶级数,理解变得更加容易,因为我相信所有人都能理解投影的概念;同时,傅里叶级数所有的公式都可以轻松的记住,想要遗忘都难了。我们在学习不同学科的时候可以经常的去做联系,尝试着用不同的角度去看待同一个问题,我相信这么做是很有好处的。傅里叶变换要理解傅立叶变换,确实需要一定的耐心,别一下子想着傅立叶变换是怎么变换的,当然,也需要一定的高等数学基础,最基本的是级数变换,其中傅立叶级数变换是傅立叶变换的基础公式。二、傅立叶变换的提出让我们先看看为什么会有傅立叶变换?傅立叶是一位法国数学家和物理学家的名字,英语原名是JeanBaptisteJosephFourier(1768-1830),Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了一篇论文,运用正弦曲线来描述温度分布,论文里有个在当时具有争议性的决断:任何连续周期信号可以由一组适当的正弦曲线组合而成。当时审查这个论文的人,其中有两位是历史上著名的数学家拉格朗日(JosephLouisLagrange,1736-1813)和拉普拉斯(PierreSimondeLaplace,1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论文时,拉格朗日坚决反对,在近50年的时间里,拉格朗日坚持认为傅立叶的方法无法表示带有棱角的信号,如在方波中出现非连续变化斜率。法国科学学会屈服于拉格朗日的威望,拒绝了傅立叶的工作,幸运的是,傅立叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国大革命后因会被推上断头台而一直在逃避。直到拉格朗日死后15年这个论文才被发表出来。谁是对的呢?拉格朗日是对的:正弦曲线无法组合成一个带有棱角的信号。但是,我们可以用正弦曲线来非常逼近地表示它,逼近到两种表示方法不存在能量差别,基于此,傅立叶是对的。为什么我们要用正弦曲线来代替原来的曲线呢?如我们也还可以用方波或三角波来代替呀,分解信号的方法是无穷的,但分解信号的目的是为了更加简单地处理原来的信号。用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有的性质:正弦曲线保真度。一个正弦曲线信号输入后,输出的仍是正弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一样的。且只有正弦曲线才拥有这样的性质,正因如此我们才不用方波或三角波来表示。三、傅立叶变换分类根据原信号的不同类型,我们可以把傅立叶变换分为四种类别:1非周期性连续信号傅立叶变换(FourierTransform)2周期性连续信号傅立叶级数(FourierSeries)3非周期性离散信号离散时域傅立叶变换(DiscreteTimeFourierTransform)4周期性离散信号离散傅立叶变换(DiscreteFourierTransform)下图是四种原信号图例:这四种傅立叶变换都是针对正无穷大和负无穷大的信号,即信号的的长度是无穷大的,我们知道这对于计算机处理来说是不可能的,那么有没有针对长度有限的傅立叶变换呢?没有。因为正余弦波被定义成从负无穷小到正无穷大,我们无法把一个长度无限的信号组合成长度有限的信号。面对这种困难,方法是把长度有限的信号表示成长度无限的信号,可以把信号无限地从左右进行延伸,延伸的部分用零来表示,这样,这个信号就可以被看成是非周期性离解信号,我们就可以用到离散时域傅立叶变换的方法。还有,也可以把信号用复制的方法进行延伸,这样信号就变成了周期性离解信号,这时我们就可以用离散傅立叶变换方法进行变换。但是对于非周期性的信号,我们需要用无穷多不同频率的正弦曲线来表示,这对于计算机来说是不可能实现的。所以对于离散信号的变换只有离散傅立叶变换(DFT)才能被适用,对于计算机来说只有离散的和有限长度的数据才能被处理,对于其它的变换类型只有在数学演算中才能用到,在计算机面前我们只能用DFT方法,后面我们要理解的也正是DFT方法。每种傅立叶变换都分成实数和复数两种方法,对于实数方法是最好理解的,但是复数方法就相对复杂许多了,需要懂得有关复数的理论知识,不过,如果理解了实数离散傅立叶变换(realDFT),再去理解复数傅立叶就更容易了,所以我们先把复数的傅立叶放到一边去,先来理解实数傅立叶变换,在后面我们会先讲讲关于复数的基本理论,然后在理解了实数傅立叶变换的基础上再来理解复数傅立叶变换。还有,这里我们所要说的变换(transform)虽然是数学意义上的变换,但跟函数变换是不同的,函数变换是符合一一映射准则的,对于离散数字信号处理(DSP),有许多的变换:傅立叶变换、拉普拉斯变换、Z变换、希尔伯特变换、离散余弦变换等,这些都扩展了函数变换的定义,允许输入和输出有多种的值,简单地说变换就是把一堆的数据变成另一堆的数据的方法。四、傅立叶变换的物理意义傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。和傅立叶变换算法对应的是反傅立叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信号转换成时域信号。从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。在数学领域,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。任意的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类:1.傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;2.傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;3.正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一

1 / 18
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功