1.(2012•三明)如图,在平面直角坐标系中,点A在第一象限,点P在x轴上,若以P,O,A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个分显示解析2.(2010•南通)在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A.5个B.4个C.3个D.2个VIP分显示解析3.(2010•鞍山)如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有()A.4个B.5个C.6个D.7个VIP分显示解析4.(2008•大庆)如图,在△ABC中,AC=BC>AB,点P为△ABC所在平面内一点,且点P与△ABC的任意两个顶点构成△PAB,△PBC,△PAC均是等腰三角形,则满足上述条件的所有点P的个数为()A.3B.4C.6D.7分显示解析5.(2004•宿迁)如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是()A.(1)(2)(3)B.(1)(2)(4)C.(2)(3)(4)D.(1)(3)(4)分显示解析6.(2002•佛山)如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点D,过点D作直线EF∥BC,交AB于E,交AC于F,图中等腰三角形的个数共有()A.3个B.4个C.5个D.6个分显示解析7.(2012•铜仁地区)如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为()A.6B.7C.8D.9分显示解析8.(2012•深圳)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6B.12C.32D.64VIP分显示解析9.(2012•凉山州)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°分显示解析10.(2010•随州)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.13B.12C.23D.不能确定11.(2009•攀枝花)如图所示,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F,则∠DFC的度数为()A.60°B.45°C.40°D.30°VIP分显示解析12.(2006•天津)如图,A、C、B三点在同一条直线上,△DAC和△EBC都是等边三角形,AE、BD分别与CD、CE交于点M、N,有如下结论:①△ACE≌△DCB;②CM=CN;③AC=DN.其中,正确结论的个数是()A.3个B.2个C.1个D.0个分显示解析13.(2012•镇江)边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为()A.13×(12)5aB.12×(13)5aC.13×(12)6aD.12×(13)6a分显示解析14.(2005•广州)如图,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有()A.2个B.4个C.6个D.7个分显示解析二.填空题(共10小题)15.(2005•绵阳)如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm.分显示解析16.(2011•曲靖)如图,等边三角形ABC的边长是6cm,BD是中线,延长BC至E,使CE=CD,连接DE,则DE的长是cm.VIP分显示解析17.(2011•茂名)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.分显示解析18.(2008•日照)如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60度.恒成立的结论有.(把你认为正确的序号都填上)VIP分显示解析19.(2007•沈阳)如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120度.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为.VIP分显示解析20.(2007•白银)如图,将一等边三角形剪去一个角后,∠1+∠2=度.分显示解析21.(2006•台州)正三角形的每一个内角都是度.分显示解析22.(2010•烟台)将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=度.分显示解析23.(2007•河南)如图,点P是∠AOB的角平分线上一点,过点P作PC∥OA交OB于点C.若∠AOB=60°,OC=4,则点P到OA的距离PD等于.分显示解析24.(2010•河源)Rt△ABC中,∠C=90°,∠A=60°,AC=2.按以下步骤作图:①以A为圆心,以小于AC长为半径画弧,分别交AC、AB于点E、D②分别以D、E为圆心,以大于12DE长为半径画弧,两弧相交于点P③连接AP交BC于点F.那么:(1)AB的长等于;(直接填写答案)(2)∠CAF=度.(直接填写答案).VIP分显示解析三.解答题(共6小题)25.(2010•河南)如图,四边形ABCD是平行四边形,△AB’C和△ABC关于AC所在的直线对称,AD和B’C相交于点O,连接BB’.(1)请直接写出图中所有的等腰三角形(不添加字母);(2)求证:△AB′O≌△CDO.分显示解析26.(2002•河南)如图所示,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任一点,DF⊥AB于F,DE⊥AC于E,M为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论.分显示解析27.(2003•广东)如图:在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点.(1)写出点O到△ABC的三个顶点A、B、C距离之间的关系;(2)如果点M、N分别在线段AB、AC上移动,移动中保持AN=BM,请判断△OMN的形状,并证明你的结论.VIP分显示解析28.(2010•丹东)如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.分显示解析29.(2002•黑龙江)已知等边△ABC和点P,设点P到△ABC三边AB、AC、BC的距离分别为h1、h2、h3,△ABC的高为h.“若点P在一边BC上(如图1),此时h3=0,可得结论h1+h2+h3=h”请直接应用上述信息解决下列问题:(1)当点P在△ABC内(如图2),(2)点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立,请给予证明;若不成立,h1、h2、h3与h之间的关系如何?请写出你的猜想,不需证明.VIP分显示解析30.(2007•自贡)已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.
本文标题:八年级期中复习
链接地址:https://www.777doc.com/doc-2695863 .html