先进制造技术研究进展--激光加工技术摘要:本文介绍了以激光加工技术为例的先进制造技术,首先交代了激光加工技术的原理以及特点,然后对激光加工技术在众多方面的应用,以及激光加工技术的发展趋势进行了简要介绍。关键词:先进制造技术激光技术发展前沿AdvancedManufacturingTechnologyResearch--LaserprocessingtechnologyAbstract:Thispaperintroducesthelaserprocessingtechnologyasanexampleofadvancedmanufacturingtechnology.Theprincipleandcharacteristicsoflaserprocessingtechnologyareillustratedfirstly,andthentheapplicationoflaserprocessingtechnologyinmanyaspects,aswellasthedevelopmenttrendarebrieflyintroduced.Keywords:AdvancedManufacturingTechnologylasertechnologyDevelopmentProspect引言先进制造技术是指微电子技术、自动化技术、信息技术等先进技术给传统制造技术带来的种种变化与新型系统。具体地说,就是指集机械工程技术、电子技术、自动化技术、信息技术等多种技术为一体所产生的技术、设备和系统的总称。先进制造技术涉及到产品从市场调研、产品开发及工艺设计、生产准备、加工制造、售后服务等产品寿命周期的所有内容,它的目的是提高制造业的综合经济效益和社会效益,是面向工业应用的技术。作为先进制造技术的佼佼者,激光加工以其适用面广、出现早、高精度等特点长期并将继续占据制造行业的一大领域。激光的研究及其在各个领域的应用得到了迅速的发展。其高相干性在高精密测量、物质结构分析、信息存储及通信等领域得到了广泛应用。激光的高方向性和高亮度可广泛应用于加工制造业(大到航天器、飞机、汽车工业,小到微电子、信息、生物细胞分离等微技术)。随着激光器件、新型受激辐射光源,以及相应工艺的不断革新与优化,尤其是近20年来,激光制造技术已渗入到诸多高新技术领域和产业,并开始取代或改造某些传统的加工行业。一、激光加工技术原理激光加工,就是激光被工件表面吸收,光能转化为热能,因其表面升温,致使工件表面组织发生变化,出现熔融、蒸发等现象,完成工件的加工。在加工的同时,可依据加工的要求,利用监控系统选择不同的能量密度和照射时间。目前,公认的激光加工原理是两种:分别为激光热加工和光化学加工(又称冷加工)。1.1激光热加工激光热加工指当激光束照射到物体表面时,引起快速加热,热力把对象的特性改变或把物料熔解蒸发。热加工具有较高能量密度的激光束(它是集中的能量流),照射在被加工材料表面上,材料表面吸收激光能量,在照射区域内产生热激发过程,从而使材料表面(或涂层)温度上升,产生变态、熔融、烧蚀、蒸发等现象。1.2光化学加工光化学加工指当激光束加于物体时,高密度能量光子引发或控制光化学反应的加工过程。冷加工具有很高负荷能量的(紫外)光子,能够打断材料(特别是有机材料)或周围介质内的化学键,至使材料发生非热过程破坏。这种冷加工在激光标记加工中具有特殊的意义,因为它不是热烧蚀,而是不产生“热损伤”副作用的、打断化学键的冷剥离,因而对被加工表面的里层和附近区域不产生加热或热变形等作用。二、激光加工技术特点由于激光具有高亮度、高方向性、高单色性和高相干性的特性,因此就给激光加工带来如下一些其它方法所不具备的可贵特点。●由于它是无接触加工,对工件无直接冲击,因此无机械变形;●激光加工过程中无刀具磨损,无切削力作用于工件;●激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有或影响极小。因此,其热影响的区小工件热变形小后续加工最小;●由于激光束易于导向、聚焦、实现方向变换,极易与数控系统配合、对复杂工件进行加工因此它是一种极为灵活的加工方法;●生产效率高,加工质量稳定可靠,经济效益和社会效益好同样是激光加工的优势。激光具有的这些优良特性决定了激光在加工领域存在的优势:①由于它是无接触加工,并且高能量激光束的能量及其移动速度均可调,因此可以实现多种加工的目的。②它可以对多种金属、非金属加工,特别是可以加工高硬度、高脆性、及高熔点的材料。③激光加工过程中无“刀具”磨损,无“切削力”作用于工件。④激光加工过程中,激光束能量密度高,加工速度快,并且是局部加工,对非激光照射部位没有影响或影响极小。因此,其热影响区小,工件热变形小,后续加工量小。⑤它可以通过透明介质对密闭容器内的工件进行各种加工。⑥由于激光束易于导向、聚集实现作各方向变换,极易与数控系统配合,对复杂工件进行加工,因此是一种极为灵活的加工方法。⑦使用激光加工,生产效率高,质量可靠,经济效益好。激光加工具有优越的加工性能,使得激光加工技术得到了广泛的应用,并产生了巨大的经济效益和社会效益。虽然激光加工拥有许多优点,但不足之处也是很明显的,例如激光加工设备目前还比较昂贵。三、激光加工技术的应用4.1激光焊接激光焊接强度高、热变形小、密封性好,可以焊接尺寸和性质悬殊,以及熔点很高(如陶瓷)和易氧化的材料。激光焊接的心脏起搏器,其密封性好、寿命长,而且体积小。激光热处理用激光照射材料,选择适当的波长和控制照射时间、功率密度,可使材料表面熔化和再结晶,达到淬火或退火的目的。激光热处理的优点是可以控制热处理的深度,可以选择和控制热处理部位,工件变形小,可处理形状复杂的零件和部件,可对盲孔和深孔的内壁进行处理。例如,气缸活塞经激光热处理后可延长寿命;用激光热处理可恢复离子轰击所引起损伤的硅材料。4.2激光打孔技术激光打孔技术具有精度高、通用性强、效率高、成本低和综合技术经济效益显著等优点,已成为现代制造领域的关键技术之一.采用脉冲激光器可进行打孔,脉冲宽度为0.1~1毫秒,特别适于打微孔和异形孔,孔径约为0.005~1毫米。激光打孔在微细孔加工中的应用,解决了一些传统机械加工不能解决的难题,为微孔加工提供了先进的加工手段.激光打孔已广泛用于钟表和仪表的宝石轴承、金刚石拉丝模、化纤喷丝头等工件的加工。4.3激光切割、划片与刻字在造船、汽车制造等工业中,常使用百瓦至万瓦级的连续CO2激光器对大工件进行切割,既能保证精确的空间曲线形状,又有较高的加工效率。对小工件的切割常用中、小功率固体激光器或CO2激光器。在微电子学中,常用激光切划硅片或切窄缝,速度快、热影响区小。用激光可对流水线上的工件刻字或打标记,并不影响流水线的速度,刻划出的字符可永久保持。4.4激光微调激光微调主要用于调整厚膜电路或薄膜电路中的电阻、电容以及其他多种功能参数。激光调阻时,受到照射的部位受热汽化挥发,阻值区域截面面积减小,随之阻值增大.激光微调的实质是打孔,每次打孔都很浅,约至几十纳米至几十微米之间,然后通过连续不断的打孔,搭接成一条线.激光微调电阻除用强光照射将部分电阻膜气化外,还可通过无损伤照射改变膜的结构达到调整阻值的目的.利用类似原理可以修复有缺陷的集成电路的掩模,修补集成电路存储器以提高成品率,还可以对陀螺进行精确的动平衡调节。激光调阻技术主要应用于精密电阻阻值调解,精度可达0.1‰~0.02‰.激光微调精度高、速度快,适于大规模生产。4.5激光存储技术光存储是最早预见的激光应用领域之一,激光存储技术是信息以反射/非反射带(正常表面和凹坑)的序列编码,已达到信息存储的目的.目前,计算机所用的可写CD-ROM就是一种激光信息存储和信息再现的介质.随着信息技术的发展,对信息存储的要求越来越高,数字视频光盘(DVD)是下一代光存储器,其存储能力是CD-ROM的7倍.因数据存储密度与激光波长的平方成反比,所以,发展波长更短的激光是提高激光存储技术的关键.4.6激光清洗技术激光清洗技术是工业生产等许多领域中的重要环节,传统的清洗方法包括机械清洗法、化学清洗法和超声波清洗法.他们在环境保护和高精度要求方面的应用受到很大的限制。激光清洗技术是近10多年来发展起来的新型清洗技术,它以自身的特点和优点得到了很好的应用,展示了广阔的应用发展前景.集成电路硅基片的加工和光刻技术、微组装技术等关键技术要求相当严格,光刻技术现在已达到0.13um以下水平.在此高精度的要求下,器件的清洗要求也非常严格,即使采用传统清洗法中精度最高的超声波清洗法进行清洗,也无法清除掉微电子产品中的次微米(0.5um以下)微小颗粒,影响高精度电子工业的发展.激光清洗技术的使用有效地解决了集成电路的清洗.4.7激光热处理激光热处理是指利用激光高能量密度的能量照射金属材料表面时,材料表层温度迅速升高,当激光停止作用后,材料基体温度迅速下降,从而使材料表层经历一个热处理过程。通过控制激光功率、功率密度分布、激光作用时间等参数,改变金属热循环形式,从而可以完成材料表层的淬火或退火等工艺。我国从上世纪70年代研制成功千瓦级CO2激光器之后,激光热处理的工业应用也取得了重要的成就。激光热处理主要应用于汽车工业(如美国通用汽车缸套热处理生产线)和精密机械微小零部件的热处理。目前,激光热处理技术由于成本高、控制复杂,还处于实验室技术层面,还没有大范围、大面积的工业化应用。4.8表面处理技术激光表面处理主要包括以下几方面的工艺:激光表面相变硬化(LTH)、激光表面熔化(LSM)、激光表面合金化(LSA)、激光表面涂覆(LSC)以及激光表面冲击硬化(LSH).激光表面相变硬化是用高能量激光束照射材料表面,使表面温度达到相变温度点以上,当激光束移开后,由于基体的传热使表面快速冷却(自淬火),从而使材料表面硬化的一项技术;激光表面熔化可使材料表面得到细晶组织、非晶态和亚稳相,在满足材料表面某些方面需要,如耐磨性、耐蚀性、防止氧化等方面显示出独特的优点;激光表面合金化是利用激光照射使材料表面熔化并提供给表面(预覆或喷射)的合金元素的物质熔化、混合均匀,以便在材料表面形成一个理想的合金层,从而改善材料表面性质的工艺;激光表面涂覆和激光表面合金化技术相似,激光表面涂覆经常用来提高材料的耐磨性、耐蚀性和耐高温性能;激光表面冲击硬化是利用激光脉冲使材料表面薄层(几个原子厚)快速蒸发,在表面原子移走的时候,发生动量脉冲并产生一个冲击波或应力波,对材料表面产生残余压应力,从而达到改善材料疲劳寿命的目的。四、激光加工技术的发展趋势与前景4.1发展趋势激光加工技术具有无接触、不需要工模具、清洁、效率较高、便于实行数控、可进行特殊加工等优点,随着该技术的不断进步与完善,人们将能对工艺的自动化和工作效率提出更高的要求。这对激光技术的发展无疑起到了推动作用。主要表现在以下两方面:4.1.1数控化和综合化:把激光器与计算机数控技术、先进的光学系统以及高精度和自动化的工件定位相结合,形成研制和生产加工中心,已成为激光加工发展的一个重要趋势。4.1.2小型化和集成化:可进行几种工艺研制和生产加工的激光加工系统,已成为激光加工的另一发展趋势。国外已把激光切割和模具冲压两种加工方法组合在一台机床上,制成激光冲床,它兼有激光切割的多功能性和冲压加工的高速高效的特点,可完成切割复杂外形、打孔、打标、划线等加工。4.2发展前景在理论研究的支持和实际需要的配合下,激光技术在工业领域的应用将更为广泛,这也使激光技术有了更加丰富的研究内容和更加广阔的应用前景。以下几个方面将是近期激光技术发展的关键和前沿课题:4.2.1研制大功率、高寿命和小型化的激光装置该研究主要包括制备适用于大功率激光的光学器件材料,提高电源的稳定性和使用寿命,实现大功率激光装置的小型化。4.2.2数学模型建立简洁且适合于现场控制的数学分析模型,缩短确定最佳工艺参数的时间。4.2.3激光快速凝固行为从凝固动力学、结晶学和相变理论出发,系统研究激光快速凝固行为,揭示材料微结构的形成、演化机理