植物生理学研究进展论文题目光合作用的原理、过程及应用学院专业班级学生姓名指导老师撰写日期:2015年6月20日光合作用(Photosynthesis)是绿色植物利用叶绿素等光合色素和某些细菌(如带紫膜的嗜盐古菌)利用其细胞本身,叶绿体在可见光的照射下,将二氧化碳和水(细菌为硫化氢和水)转化为储存着能量的有机物,并释放出氧气(细菌释放氢气[1])的生化过程。同时也有将光能转变为有机物中化学能的能量转化过程。植物之所以被称为食物链的生产者,是因为它们能够通过光合作用利用无机物生产有机物并且贮存能量。通过食用,食物链的消费者可以吸收到植物及细菌所贮存的能量,效率为10%~20%左右。对于生物界的几乎所有生物来说,这个过程是它们赖以生存的关键。而地球上的碳氧循环,光合作用是必不可少的。作用原理植物与动物不同,它们没有消化系统,因此它们必须依靠其他的方式来进行对营养的摄取,植物就是所谓的自养生物的一种。对于绿色植物来说,在阳光充足的白天(在光照强度太强的时候植物的气孔会关闭,导致光合作用强度减弱),它们利用太阳光能来进行光合作用,以获得生长发育必需的养分。这个过程的关键参与者是内部的叶绿体。叶绿体在阳光的作用下,把经由气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉等物质,同时释放氧气。光合作用是将太阳能转化为ATP中活跃的化学能再转化为有机物中稳定的化学能的过程:化学方程式CO2+H2O→(CH2O)+O2(反应条件:光能和叶绿体)12H2O+6CO2+阳光→C6H12O6(葡萄糖)+6O2+6H2O(与叶绿素产生化学作用)(化学反应式12H2O+6CO2→C6H12O6(葡萄糖)+6O2+6H2O标条件是酶和光照,下面是叶绿体)H2O→2H+2e-+1/2O2(水的光解)NADP++2e-+H+→NADPH(递氢)ADP+Pi+能量→ATP(递能)CO2+C5化合物→2C3化合物(二氧化碳的固定)2C3化合物+4NADPH→C5糖(有机物的生成或称为C3的还原)C3(一部分)→C5化合物(C3再生C5)C3(一部分)→储能物质(如葡萄糖、蔗糖、淀粉,有的还生成脂肪)ATP→ADP+Pi+能量(耗能)C3:某些3碳化合物C5:某些5碳化合物能量转化过程:光能→电能→ATP中活跃的化学能→有机物中稳定的化学能→ATP中活跃的化学能注:因为反应中心吸收了特定波长的光后,叶绿素a激发出了一个电子,而旁边的酵素使水裂解成氢离子和氧原子,多余的电子去补叶绿素a分子上缺的。产生ATP与NADPH分子,这个过程称为电子传递链(ElectronTransportChain)电子传递链分为循环和非循环。非循环电子传递链从光系统II出发,会裂解水,释放出氧气,生产ATP与NADPH.循环电子传递链不会产生氧气,因为电子来源并非裂解水。最后会生成ATP.由光合作用的简要过程可见,从叶绿素a吸收光能开始,就发生了电子的移动,形成了电子传递链,有了电子传递链,才能使得ATP合成酶将ADP和磷酸合成ATP.因此,它的能量转化过程为:光能→电能→不稳定的化学能(能量储存在ATP的高能磷酸键)→稳定的化学能(淀粉等糖类的合成)注意:光反应只有在光照条件下进行,而只要在满足碳反应条件的情况下碳反应都可以进行。也就是说碳反应不一定要在黑暗条件下进行。反应阶段光合作用可分为光反应和碳反应(旧称暗反应)两个阶段。光反应条件:光照、光合色素、光反应酶。场所:叶绿体的类囊体薄膜。(蓝细菌等微生物的反应场所在细胞膜)(色素所在地)光合作用的反应:(原料)光(产物)水-----------→氧气(光和叶绿体是条件)+能量(储存在ATP中)+还原氢(NADPH)叶绿体过程:①水的光解:2H2O→4[H]+O2(在光和叶绿体中的色素的催化下)。②ATP的合成:ADP+Pi+能量→ATP(在酶的催化下)。影响因素:光照强度、CO2浓度、水分供给、温度、酸碱度、矿质元素等。意义:①光解水,产生氧气。②将光能转变成化学能,产生ATP,为碳反应提供能量。③利用水光解的产物氢离子,合成NADPH(还原型辅酶Ⅱ),为碳反应提供还原剂NADPH(还原型辅酶Ⅱ)。碳反应条件:多种酶。场所:叶绿体基质。过程:①碳的固定:C5+CO2→2C3(在酶的催化下)②C3+[H]→(CH2O)+C5(在ATP供能和酶的催化下)影响因素:温度、CO2浓度光合色素类囊体中含两类色素:叶绿素和橙黄色的类胡萝卜素,通常叶绿素和类胡萝卜素的比例约为3:1,chla与chlb也约为3:1,在许多藻类中除叶绿素a,b外,还有叶绿素c,d和藻胆素,绿叶是光合作用的场所如藻红素和藻蓝素;在光合细菌中是细菌叶绿素等。叶绿素a,b和细菌叶绿素都由一个与镁络合的卟啉环和一个长链醇组成,它们之间仅有很小的差别。类胡萝卜素是由异戊烯单元组成的四萜,藻胆素是一类色素蛋白,其生色团是由吡咯环组成的链,不含金属,而类色素都具有较多的共轭双键。全部叶绿素和几乎所有的类胡萝卜素都包埋在类囊体膜中,与蛋白质以非共价键结合,一条肽链上可以结合若干色素分子,各色素分子间的距离和取向固定,有利于能量传递。类胡萝卜素与叶黄素能对叶绿素a,b起一定的保护作用。几类色素的吸收光谱不同,叶绿素a,b吸收红,橙,蓝,紫光,类胡萝卜素吸收蓝紫光,吸收率最低的为绿光。特别是藻红素和藻蓝素的吸收光谱与叶绿素的相差很大,这对于在海洋里生活的藻类适应不同的光质条件,有生态意义。电子传递链组分集光复合体由大约200个叶绿素分子和一些肽链构成。大部分色素分子起捕获光能的作用,并将光能以诱导共振方式传递到反应中心色素。因此这些色素被称为天线色素。叶绿体中全部叶绿素b和大部分叶绿素a都是天线色素。另外类胡萝卜素和叶黄素分子也起捕获光能的作用,叫做辅助色素。光系统Ⅰ(PSI)能被波长700nm的光激发,又称P700。包含多条肽链,位于基粒与基质接触区的基质类囊体膜中。由集光复合体Ⅰ和作用中心构成。结合100个左右叶绿素分子、除了几个特殊的叶绿素为中心色素外,其它叶绿素都是天线色素。三种电子载体分别为A0(一个chla分子)、A1(为维生素K1)及3个不同的4Fe-4S。光系统Ⅱ(PSⅡ)吸收高峰为波长680nm处,又称P680。至少包括12条多肽链。位于基粒与基质非接触区域的类囊体膜上。包括一个集光复合体(light-hawestingcomnplexⅡ,LHCⅡ)、一个反应中心和一个含锰原子的放氧的复合体(oxygenevolvingcomplex)。D1和D2为两条核心肽链,结合中心色素P680、去镁叶绿素(pheophytin)及质体醌(plastoquinone)。细胞色素b6/f复合体可能以二聚体形式存在,每个单体含有四个不同的亚基。细胞色素b6(b563)、细胞色素f、铁硫蛋白、以及亚基Ⅳ(被认为是质体醌的结合蛋白)。非循环电子传递链过程大致如下:光系统II→初级接受者(Primaryacceptor)→质粒醌(Pq)→细胞色素复合体(CytochromeComplex)→质粒蓝素(含铜蛋白质,Pc)→光系统1→初级接受者→铁氧化还原蛋白(Fd)→NADP+还原酶(NADP+reductase)非循环电子传递链从光系统II出发,会裂解水,释出氧气,生产ATP与NADPH。循环电子传递链的过程如下:光系统1→初级接受者(Primaryacceptor)→铁氧化还原蛋白(Fd)→细胞色素复合体(CytochromeComplex)→质粒蓝素(含铜蛋白质)(Pc)→光系统1循环电子传递链不会产生氧气,因为电子来源并非裂解水。最后会生产出ATP。非循环电子传递链中,细胞色素复合体会将氢离子打到类囊体(Thylakoid)里面。高浓度的氢离子会顺着高浓度往低浓度的地方流这个趋势,像类囊体外扩散。但是类囊体膜是双层磷脂膜(Phospholipiddilayer),对于氢离子移动的阻隔很大,它只能通过一种叫做ATP合成酶(ATPSynthase)的通道往外走。途中正似水坝里的水一般,释放它的位能。经过ATP合成酶时会提供能量、改变它的形状,使得ATP合成酶将ADP和磷酸合成ATP。NADPH的合成没有如此戏剧化,就是把送来的电子与原本存在于基质内的氢离子与NADP+合成而已。值得注意的是,光合作用中消耗的ATP比NADPH要多得多,因此当ATP不足时,相对来说会造成NADPH的累积,会刺激循环式电子流之进行。光合磷酸化P680接受能量后,由基态变为激发态(P680*),然后将电子传递给去镁叶绿素(原初电子受体),P680*带正电荷,从原初电子供体Z(反应中心D1蛋白上的一个酪氨酸侧链)得到电子而还原;光合作用电子传递链Z+再从放氧复合体上获取电子;氧化态的放氧复合体从水中获取电子,使水光解。2H2O→O2+2(2H+)+4e-在另一个方向上去镁叶绿素将电子传给D2上结合的QA,QA又迅速将电子传给D1上的QB,还原型的质体醌从光系统Ⅱ复合体上游离下来,另一个氧化态的质体醌占据其位置形成新的QB。质体醌将电子传给细胞色素b6/f复合体,同时将质子由基质转移到类囊体腔。电子接着传递给位于类囊体腔一侧的含铜蛋白质体蓝素(plastocyanin,PC)中的Cu2+,再将电子传递到光系统Ⅱ。P700被光能激发后释放出来的高能电子沿着A0→A1→4Fe-4S的方向依次传递,由类囊体腔一侧传向类囊体基质一侧的铁氧还蛋白(ferredoxin,FD)。最后在铁氧还蛋白-NADP还原酶的作用下,将电子传给NADP+,形成NADPH。失去电子的P700从PC处获取电子而还原。以上电子呈Z形传递的过程称为非循环式光合磷酸化,当植物在缺乏NADP+时,电子在光系统内Ⅰ流动,只合成ATP,不产生NADPH,称为循环式光合磷酸化。一对电子从P680经P700传至NADP+,在类囊体腔中增加4个H+,2个来源于H2O光解,2个由PQ从基质转移而来,在基质外一个H+又被用于还原NADP+,所以类囊体腔内有较高的H+(pH≈5,基质pH≈8),形成质子动力势,H+经ATP合酶,渗入基质、推动ADP和Pi结合形成ATP。ATP合酶,即CF1-F0偶联因子,结构类似于线粒体ATP合酶。CF1同样由5种亚基组成α3β3γδε的结构。CF0嵌在膜中,由4种亚基构成,是质子通过类囊体膜的通道。C3类植物二战之后,美国加州大学伯利克分校的马尔文·卡尔文与他的同事们研究一种名叫Chlorella的藻,以确定植物在光合作用中如何固定CO2。此时C14示踪技术和双向纸层析法技术都已经成熟,卡尔文正好在实验中用上此两种技术。他们将培养出来的藻放置在含有未标记CO2的密闭容器中,然后将C14标记的CO2注入容器,培养相当短的时间之后,将藻浸入热的乙醇中杀死细胞,使细胞中的酶变性而失效。接着他们提取到溶液里的分子。然后将提取物应用双向纸层析法分离各种化合物,再通过放射自显影分析放射性上面的斑点,并与已知化学成份进行比较。C4类植物在20世纪60年代,澳大利亚科学家哈奇和斯莱克发现玉米、甘蔗等热带绿色植物,除了和其他绿色植物一样具有卡尔文循环外,CO2首先通过一条特别的途径被固定。C3和C4植物叶片结构比较这条途径也被称为哈奇-斯莱克途径(Hatch-Slack途径),又称四碳二羧酸途径C4植物主要是那些生活在干旱热带地区的植物。在这种环境中,植物若长时间开放气孔吸收二氧化碳,会导致水分通过蒸腾作用过快的流失。所以,植物只能短时间开放气孔,二氧化碳的摄入量必然少。植物必须利用这少量的二氧化碳进行光合作用,合成自身生长所需的物质。在C4类植物叶片维管束的周围,有维管束鞘围绕,这些维管束鞘细胞含有叶绿体,但里面并无基粒或发育不良。在这里,主要进行卡尔文循环。其叶肉细胞中,含有独特的酶,即磷酸烯醇式丙酮酸碳羧化酶,使得二氧化碳先被一种三碳化合物--磷酸烯醇式丙酮酸同化,形成四碳化合物草酰乙酸,这也是该暗反应类型名称的由来。这草酰乙酸在转变为苹果酸盐后,进入维管束鞘,就会分解释放二氧化碳和一分子丙酮酸。二氧化碳进入卡尔文循环,后同