光电技术应用及发展前景43年前,世界上第一台红宝石激光器诞生。那是的人们可能还没有意识到,由这台激光器引发、孕育出的光电技术将会给人类的生活带来翻天覆地的变化。随着光电子技术的发展,当今社会正在从工业社会向信息社会过渡,国民经济和人们生活对信息的需求和依赖急剧增长,不仅要求信息的时效好、数量大,并且要求质量高、成本低。在这个社会大变革时期,光电子技术已经渗透到国民经济的每个方面,成为信息社会的支柱技术之一。总之,光电子技术具有许多优异的性能特征,这使得它具有很大的实用价值。而今天,光电子产业已经成为了21世纪的主导产业之一,光电子产业的参天大树上也结出了丰富的果实,它们包括但不限于光通信、光显示、光存储、影像、光信号、太阳能电池等,也可以简单地把现在的光电子产业分为信息光电子(光纤光缆、光通讯设备等)、能量光电子(激光器、激光加工成套设备、测控仪表、激光医疗设备等)和娱乐光电子(VCD、DVD等)等方面。而本文将介绍光电子技术在以下几个领域的应用前景:一.光通信:目前,光通信网络行业进入高速发展期,以光纤为技术基础的网络通信现在已经覆盖了许多地区,我国的光通信技术也走在世界前沿。2011年,武汉邮科院在北京宣布完成“单光源1-Tbit/sLDPC码相干光OFDM1040公里传输技术与系统实验”,这一传输速率是目前国内商用最快速率(40Gb/s)的25倍。十年发展,光通信商用水平的最高单通道速率增长16倍,最大传输容量增长160倍。2005年,邮科院实现了全球率先实现在一对光纤上4000万对人同时双向通话。2011年7月29日,该院在全球率先实现一根光纤承载30.7Tb/s信号的传输,可供5亿人同时在一根光纤上通话,再次刷新了世界纪录。而正在研制中的科技开发项目,有望在2014年实现12.5亿对人同时通话。这一技术打破了美国在该领域保持的单光源传输世界纪录。在2012年的中国光博会上,新技术新产品层出不穷。随着“宽带中国”上升为国家战略,中国得天独厚的优势将使光通信制造企业信心十足。通过对各技术分支专利的分析看出,光传输物理层PHY和光核心网OCN已相对成熟和大规模商用,PHY作为各类网络传输技术的基础,既有相对成熟、淡出主流研究视野的部分,也有业界正致力于寻求最佳方案的技术点;无光源网络PON技术作为世界普遍应用的接入网技术,在“光纤到户”、“三网融合”等概念家喻户晓的今天,已成为各国基础设施建设投资中不可或缺的一部分;分组传输网PTN既是新兴技术,又得到了相对广泛的商用,其在移动回传中的应用使其成为下一代移动通信网络建设中的一种较优的可选方案,同时相应技术标准正在争议中发展,其技术发展将带来难以估量的商机;智能交换光网络ASON技术和全光网AON技术是光通信网络技术中的前沿技术,目前处于研发的活跃期。此外,复旦大学近期研发的可见光通讯技术也是光通信的发展前景之一,通过给普通的LED灯泡加装微芯片,使灯泡以极快的速度闪烁,就可以利用灯泡发送数据。而灯泡的闪烁频率达到每秒数百万次。通过这种方式,LED灯泡可以快速传输二进制编码。但对裸眼来说,这样的闪烁是不可见的,只有光敏接收器才能探测。这类似于通过火炬发送莫尔斯码,但速度更快,并使用了计算机能理解的字母表。使用标准的LED照明灯,哈斯与他的同事戈登·波维创建的研究小组已经达到了两米距离的130兆比特每秒的传输速度。随着白炽灯、荧光灯逐渐退出市场并被LED取代,未来任何有光的地方都可以成为潜在的LiFi数据传输源。想象一下这样的场景:在街头,利用路灯就可以下载电影;在家里,打开台灯就可以下载歌曲;在餐厅,坐在有[4]灯光的地方就可以发微博;即便是在水下,只要有灯光照射就可以上网。LiFi另一个巨大的好处是在任何对无线电敏感的场合都可以使用,比如飞机上、手术室里等。二.光显示:近年来,人们对显示产品高清、轻薄、节能的需求不断深化,显示领域新技术不断涌现,带动显示产业高速增长,已成为国家科技创新的重点领域和国民经济发展的支柱产业。目前,液晶如日中天,有机发光显示(OLED)蓄势待发。OLED的基本结构是由一薄而透明具半导体特性之铟锡氧化物(ITO),与电力之正极相连,再加上另一个金属阴极,包成如三明治的结构。整个结构层中包括了:空穴传输层(HTL)、发光层(EL)与电子传输层(ETL)。当电力供应至适当电压时,正极空穴与阴极电荷就会在发光层中结合,产生光亮,依其配方不同产生红、绿和蓝RGB三原色,构成基本色彩。OLED的特性是自己发光,不像TFTLCD需要背光,因此可视度和亮度均高,其次是电压需求低且省电效率高,加上反应快、重量轻、厚度薄,构造简单,成本低等,被视为21世纪最具前途的产品之一。有机发光二极体的发光原理和无机发光二极体相似。当元件受到直流电(DirectCurrent;DC)所衍生的顺向偏压时,外加之电压能量将驱动电子(Electron)与空穴(Hole)分别由阴极与阳极注入元件,当两者在传导中相遇、结合,即形成所谓的电子-空穴复合(Electron-HoleCapture)。而当化学分子受到外来能量激发後,若电子自旋(ElectronSpin)和基态电子成对,则为单重态(Singlet),其所释放的光为所谓的荧光(Fluorescence);反之,若激发态电子和基态电子自旋不成对且平行,则称为三重态(Triplet),其所释放的光为所谓的磷光(Phosphorescence)。当电子的状态位置由激态高能阶回到稳态低能阶时,其能量将分别以光子(LightEmission)或热能(HeatDissipation)的方式放出,其中光子的部分可被利用当做显示功能;然有机荧光材料在室温下并无法观测到三重态的磷光,故PM-OLED元件发光效率之理论极限值仅25%。很多手机厂商使用OLED技术研发出了可弯曲的AMOLED屏幕,2013年1月,LG电子在CES上全球首次发布LG曲面OLED电视,这表明全球进入了大尺寸OLED时代。9月13日,LG电子在北京召开电视新品发布会,推出中国第一款LG曲面OLED电视——LG55EA9800-CA,这标志着中国的OLED电视时代正式来临。据市场研究公司iSuppli最新发表的研究报告称,2013年全球OLED(有机发光二极管)电视机出货量将从2007年的3000台增长到280万台,复合年增长率为212.3%。从全球销售收入看,2013年全球OLED电视机的销售收入将从2007年的200万美元增长到14亿美元,复合年增长率为206.8%。iSuppli称,OLED显示技术要对市场产生真正的影响还需要克服一些挑战。首先,AMOLED显示屏制造工艺还不充分。随着显示屏尺寸的加大,成品率损失和制造损失也越来越大。此外,OLED显示屏材料的使用寿命仍需要提高。AMOLED供应商不能保证产量。不过,OLED电视机也有许多优点。OLED电视不需要背光,因此比其它技术更省电和更多做的更薄。OLED电视响应时间非常快,在观看电视的时候没有移动模糊的现象。此外,OLED电视比其它技术的色彩更丰富。三.光存储目前主要的光存储技术有光盘存储技术、全息存储技术等,而多阶光存储技术、高清晰光存储技术等也在研发、实践过程中。其中多阶光存储是目前国内外光存储研究的重点之一,缘于它可以大大地提高存储容量和数据传输率。在传统的光存储系统中,二元数据序列存储在记录介质中,记录符只有两种不同的物理状态,例如只读光盘中交替变化的坑岸形貌。多阶光存储是读出信号呈现多阶特性,或者直接采用多阶记录介质。多阶光存储分为信号多阶光存储和介质多阶光存储。而对于高清晰度的光存储技术,随着高清晰度电视系统的出现及使用,更高画面质量和音质节目的出现意味着需要更大容量和更高性价比的物理载体。国内外相继推出了各种高清晰度光盘技术方案,如采用红光技术的EVD、NVD、FVD和采用蓝光技术的BD、HDDVD、CBHD。如红光技术中的EVD技术,是我国企业联合研发的基于红光技术的光存储技术。代表企业为北京阜国数字技术有限公司(开发EVD主体系统)、今典环球公司(负责EVD片源的供应)、新科电子公司(最先推出EVD影碟机的厂商)。EVD的主要特点是:在不改变DVD物理格式的前提下,使用部分新的音视频编码技术,如在视频部分EVD可使用MPEG--2、H.264、WMV一9、AVS等,在音频方面使用EVD独有的EAC音频编码技术。而蓝光技术中的HDDVD也采用蓝紫光技术,盘片容量为单面单层15GB、双层30GB,双面单层30GB、双层60GB。HDDVD采用MPEG-4、H.264、WMV一9和MPEG-2视频编码,音频采用DolbyDigitalPlus、DTS、DolbyDigital和MPEGAudio等有损编码和LPCM、MLP和DTSHD等无损编码。HDDVD兼容现有DVD,生产成本也较低。四.激光技术对于激光技术的发展前景,最近比较热的是3D打印技术和光刻机。3D打印技术分为很多种,主要有:以高分子聚合反应为基本原理的:激光立体印刷术(Stereolithography,SLA,有著名的Objet(已和Stratasys合并)和FormLabs为代表),高分子打印技术(PolymerPrinting),高分子喷射技术(PolymerJetting),数字化光照加工技术(DigitalLightingProcessing),微型立体印刷术(MicroStereolithography)。其中SLA全称Stereolithography(立体印刷术)。它用激光选择性地让需要成型的液态光敏树脂发生聚合反应变硬,从而造型。SLA有两大类,一种是Objet为代表的,从下到上打印的。另一种是FormLabs为代表的,从上往下打印的。以烧结和熔化为基本原理:选择性激光烧结技术(SelectiveLaserSintering,SLS,3D打印行业龙头老大3DSystem的看家本领),选择性激光熔化技术(SelectiveLaserMelting,SLM),电子束熔化技术(ElectronBeamMelting,EBM)。而其中SLS全称SelectiveLaserSintering(选择性激光烧结)。和SLA类似,SLS使用激光。和SLA不同的是,SLS用的不是液态的光敏树脂,而是粉末。激光的能量让粉末产生高温和相邻的粉末发生烧结反应连接在一起以粉末-粘合剂为基本原理:三维打印技术(ThreeDimensionalPrinting,3DP,MIT在90年发明的,Zcorp(已被3DSystems收购)、EOS和voxeljet是杰出代表),而这种技术是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术。3D打印机则出现在上世纪90年代中期,即一种利用光固化和纸层叠等技术的快速成型装置。它与普通打印机工作原理基本相同,打印机内装有液体或粉末等“印材料”,与电脑连接后,通过电脑控制把“打印材料”一层层叠加起来,最终把计算机上的蓝图变成实物。目前最先进的光刻技术采用的是浸入式光刻技术,浸入式光刻的原型实验在上世纪90年代开始陆续出现。1999年,IBM的Hoffnagle使用257nm干涉系统制作出周期为89nm的密集图形。当时使用的浸入液是环辛烷。但因为当时对浸入液的充入、镜头的沾污、光刻胶的稳定性和气泡的伤害等关键问题缺乏了解,人们并未对浸入式光刻展开深入的研究。2002年以前,业界普遍认为193nm光刻无法延伸到65nm技术节点,而157nm将成为主流技术。然而,157nm光刻技术遭遇到了来自光刻机透镜的巨大挑战。这是由于绝大多数材料会强烈地吸收157nm的光波,只有CaF2勉强可以使用。但研磨得到的CaF2镜头缺陷率和像差很难控制,并且价格相当昂贵。雪上加霜的是它的使用寿命也极短,频繁更换镜头让芯片制造业无法容忍。正当众多研究者在157nm浸入式光刻面前踌躇不前时,时任TSMC资深处长的林本坚提出了193nm浸入式光刻的概念。在157nm波长下水是不透明的液