克里格插值法

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

克里格法(Kriging)——有公式版二、克里格法(Kriging)克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。克里格法的适用条件是区域化变量存在空间相关性。克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。应用克里格法首先要明确三个重要的概念。一是区域化变量;二是协方差函数,三是变异函数一、区域化变量当一个变量呈空间分布时,就称之为区域化变量。这种变量反映了空间某种属性的分布特征。矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。区域化变量具有两个重要的特征。一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X与偏离空间距离为h的点X+h处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。在某种意义上说这就是区域化变量的结构性特征。二、协方差函数协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。在概率理论中,随机向量X与Y的协方差被定义为:区域化变量在空间点x和x+h处的两个随机变量Z(x)和Z(x+h)的二阶混合中心矩定义为Z(x)的自协方差函数,即区域化变量Z(x)的自协方差函数也简称为协方差函数。一般来说,它是一个依赖于空间点x和向量h的函数。设Z(x)为区域化随机变量,并满足二阶平稳假设,即随机函数Z(x)的空间分布规律不因位移而改变,h为两样本点空间分隔距离或距离滞后,Z(xi)为Z(x)在空间位置xi处的实测值,Z(xi[size=2]+h[/size])是Z(x)在xi处距离偏离h的实测值,根据协方差函数的定义公式,可得到协方差函数的计算公式为:在上面的公式中,N(h)是分隔距离为h时的样本点对的总数,和分别为和的样本平均数,即在公式中N为样本单元数。一般情况下(特殊情况下可以认为近似相等)。若(常数),协方差函数可改写为如下:式中,m为样本平均数,可由一般算术平均数公式求得,即三、变异函数变异函数又称变差函数、变异矩,是地统计分析所特有的基本工具。在一维条件下变异函数定义为,当空间点x在一维x轴上变化时,区域化变量Z(x)在点x和x+h处的值Z(x)与Z(x+h)差的方差的一半为区域化变量Z(x)在x轴方向上的变异函数,记为,即在二阶平稳假设条件下,对任意的h有,因此上式可以改写为:从上式可知,变异函数依赖于两个自变量x和h,当变异函数仅仅依赖于距离h而与位置x无关时,可改写成,即设Z(x)是系统某属性Z在空间位置x处的值,Z(x)为一区域化随机变量,并满足二阶平稳假设,h为两样本点空间分隔距离,Z(xi)和Z(xi+h)分别是区域化变量在空间位置xi和xi+h处的实测值[i=1,2,...,N(h)],那么根据上式的定义,变异函数的离散公式为:变异函数揭示了在整个尺度上的空间变异格局,而且变异函数只有在最大间隔距离1/2处才有意义。四、克里格估计量假设x是所研究区域内任一点,Z(x)是该点的测量值,在所研究的区域内总共有n个实测点,即x1,x2,...,xn,那么,对于任意待估点或待估块段V的实测值Zv(x),其估计值是通过该待估点或待估块段影响范围内的n个有效样本值的线性组合来表示,即式中,为权重系数,是各已知样本在Z(xi)在估计时影响大小的系数,而估计的好坏主要取决于怎样计算或选择权重系数。在求取权重系数时必须满足两个条件,一是使的估计是无偏的,即偏差的数学期望为零;二是最优的,即使估计值和实际值Zv(x)之差的平方和最小,在数学上,这两个条件可表示为五、普通克里格分析方法设Z(x)为区域化变量,满足二阶平稳和本征假设,其数学期望为m,协方差函数c(h)及变异函数λ(h)存在。即对于中心位于x0的块段为V,其平均值为Zv(x0)的估计值以进行估计。在待估区段V的邻域内,有一组n个已知样本,其实测值为。克里格方法的目标是求一组权重系数,使得加权平均值:成为待估块段V的平均值Zv(x0)的线性、无偏最优估计量,即克里格估计量。为此,要满足以下两个条件:1、无偏性。要使成为Zv(x)的无偏估计量,即,当时,也就是当时,则有:这时,是的无偏估计量。2、最优性。在满足无偏性条件下,估计方差为由方差估计可知为使估计方差最小,根据拉格朗日乘数原理,令估计方差的公式为:求以上公式对和的偏导数,并令其为0,得克里格方程组整理后得:解上述n+1阶线性方程组,求出权重系数λi和拉格朗日乘数μ,并带入公式,经过计算可得克里格估计方差,即:以上三个公式都是用协方差函数表示的普通克里格方程组和普通克里格方差。

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功