在进行免疫沉淀前,需要取一部分断裂后的染色质做Input对照。Input是断裂后的基因组DNA,需要与沉淀后的样品DNA一起经过逆转交联,DNA纯化,以及最后的PCR或其他方法检测。Input对照不仅可以验证染色质断裂的效果,还可以根据Input中的靶序列的含量以及染色质沉淀中的靶序列的含量,按照取样比例换算出ChIP的效率,所以Input对照是ChIP实验必不可少的步骤。1.1.1免疫沉淀1)蛋白提取(1)取10盘长满10cm大皿的HepG2细胞,弃去培养基,用预冷PBS清洗细胞3次,吸净PBS残液。(2)加预冷的裂解液(含蛋白酶和磷酸酶抑制剂)至培养皿中(每皿500-1000ul),冰上孵育30min。(3)用细胞刮刮取,收集细胞裂解液并移至离心管,4℃离心13,000g,10min。(4)将上清移至新离心管中,可用于蛋白浓度测定或远期研究。2)准备磁珠(1)将proteinA和proteinG珠子分别摇晃5min混悬,各吸取50ul珠子到1.5mlEP管中,组成100ul珠子混合物。(2)小离心机离心20-30s,去上清。3)结合抗体(1)将肝细胞癌患者血清20ul和200ulAbBinding&WashingBuffer加入上述EP管中。(2)室温旋转10min孵育。(3)小离心机离心20-30s,去上清。(4)加入200ulAbBinding&WashingBuffer,轻柔吹打重悬珠子。4)免疫沉淀(1)将上述EP管离心,去上清。(2)取5ml蛋白裂解液轻柔吹打重悬珠子-抗体复合物。(3)室温旋转孵育30min(将抗原结合到珠子-抗体复合物上)。(4)离心机离心20-30s,将上清吸入干净离心管备用。(5)使用200ulWashingBuffer清洗珠子-抗体-抗原复合物3次,即轻柔重悬、离心去上清3次。(6)100ulWashingBuffer重悬珠子-抗体-抗原复合物,将混悬液移至干净EP管。5)洗脱目的抗原(1)将EP管离心,去上清。(2)加20uLElutionBuffer,轻柔吹悬复合物,避免产生气泡。(3)室温旋转孵育2min,分离复合物。(4)EP管离心,将上清放吸入新EP管备用。完成《WB实战指南》后,朋友曾央分享点免疫共沉淀方面的咚咚;当时不得不回绝。因为,WB指南是基于这些年的回复的汇总,基本上方方面面的问题都有提及,只需要做些串联;而论及coIP,目前在国内还不太普及,尽管它已经是生化领域最基本的技术之一。因此,再想写这么个长篇颇耗时间,于我的时间和精力太为难;不过,今天是个特殊的日子,凑凑热闹吧。——人,如果在某些方面成功了,必然在另外一面有亏欠,也许这就是上帝的公允吧。——在自己最擅长的地方找点成功的感觉吧,当然我的失败也只是因为没有更多的时间。。。哎!扯远了玩coIP也玩了5年多了,因为上手就是最难的B蛋白结合量多少的变化(假定IPA蛋白)而非检测B蛋白的有无,说句吹牛皮的话,在我们这个小领域三家最强的lab唯有我们敢于通篇基于这种检测手段,所以,对于coIP算是非常得有心得了。以下论述基于最难的B蛋白结合水平变化的检测,所以部分实验操作非常苛求;学会这个,其他就是小菜了;所以,这也算一个进阶篇。一.样品的制备。如《WB指南》,在这里我最强调从制备样品开始的一致性。如果不触及细胞的凋亡或死亡,那么任何处理组样品和ctrl最后的终体积应该保持一致;如果细胞有大量凋亡或死亡,可以通过比对标准体积对样品的体积粗略定量后再加裂解液,一般可以把误差控制在WB的检出范围以下,基本保持样品的均一;组织样品可以通过称重添加相应体积比的裂解液。裂解液的配方可以采用《WB指南》里给出的,原配方如下:20mMTris/HCl,pH7.6,100mMNaCl,20mMKCl,1.5mMMgCl2,0.5%NP-40andproteaseinhibitors(0.5MPMSF)此裂解缓冲液裂解条件相对温和,适合后续的coIP分析。“不过”用它做coIP有明显的缺陷;要理解此配方的缺陷,我们先聊聊如何在coIP实验中“作伪”。伪造结果,也分为单纯性造假和技术型伪造。撇去前者,从技巧上来讲,如果要想获得设定、预想的相互作用结果,可以从几个角度着手——此类结果可重复。a.在低盐离子裂解液中进行IP。很多蛋白复合体对盐浓度敏感,但敏感性有强弱之别。通常来说,真实存在着的蛋白复合体能耐受生理盐(0.15M)或更高浓度,即在生理盐浓度下不会解体。具体如,某种CDK和Cyclin其牢固程度能耐受0.8-1.0M以上的高盐而不解体,即使其抑制蛋白CKI能耐受0.6M以上高盐。因此,了解一个蛋白复合体对盐浓度的耐受,既是一个帮助判断蛋白复合体是否真实存在的一个重要依据,更是一个非常重要的生化数据;对某些体外生化反应的蛋白原料的纯化制备也是很重要的辅助依据。例如,纯化有生物活性的CDK和Cyclin,如果采用盐浓度漂洗,则最低需0.6M以上以解离CKI。所以,在生化领域的coIP分析中,很多实验体系的盐浓度是比生理盐浓度更高的。当然,不排除某些弱相互作用需要生理盐浓度,但这种情况不多见;也容易跟瞬时的相互作用混淆,某些实验中的弱相互作用实际是由于生化反应的瞬时性,且缺乏有效的截留、富集手段,诸如酶和底物。很多非生化领域的,喜欢在生理盐或更低盐浓度下进行coIP,这大大增加了假阳性的几率——很多蛋白间非特异性的黏粘被记录下来。这也成为了获得“设定的”相互作用的有效手段。b.过表达。现在已经存世的相当多的实验论文和数据,其蛋白复合体相互作用的数据是通过过表达,甚至原核GSTpulldown获得的;笔者认为,在阅读这类文献时,大家要特别小心,多长一个心眼——即始终抱怀疑的态度。并非说一定不可取,但是有一点很明确,这样的数据送到我们手里,首先我们会要求对方补充内源性蛋白相互作用的证据,否则该结果一律不采信。在《WB指南》里面我提过,血清中丰富的BSA可以被任意抗体识别(其实也是一种相互作用),那么同理高丰度的两种或多种蛋白人为拼凑到一起,为什么不可以非特异性的黏粘或者发生弱的相互作用呢?因此,如果想要“特定”的相互作用,可以考虑过表达所有的蛋白,就是核蛋白结合胞浆蛋白甚至膜表面受体也不稀奇。c.不添加NP40一类表面活性剂,削弱对非特异性结合的拮抗。NP40除可以在膜上穿孔外,也可以有效的拮抗非特异性的蛋白相互作用,提高coIP的特异性。因此,减少或不添加NP40也可以辅助“预期”目的。实际上,掌握a、b两点技巧,基本上可以“无往而不胜”——彻底搞定一切“想要的”相互作用。基于以上的原因,如果想获得切实可靠的相互作用数据,那么裂解液的选取相当讲究。1.首先盐浓度至少0.15M或以上。盐浓度主要指Na盐浓度。有人会问为什么不是钾盐?因为钾盐会更容易跟某些试剂(或离子)形成沉淀,诸如SDS,因此在某些情况下,钾盐会对后续的某些实验带来未知的麻烦,所以一般盐浓度指Na盐。盐浓度过低对某些与染色体结合较牢的蛋白的抽提(非破膜的温和裂解)效率也较差,可能会丢失部分信息;而盐浓度过高又会造成某些相互作用较弱的复合体解体,因此,通常选择0.15——0.3M做细胞裂解。纯化蛋白通常选取0.6M以上进行IP。小技巧:最初几遍的漂洗buff要和IP时的盐浓度相同。经验上,纯化蛋白时,若用低盐裂解细胞、高盐漂洗去杂质,蛋白丢失较多;所以,一般如前所述。当然,也可以高盐裂解低盐漂洗,但是对除杂质不利。2.通常IP体系中NP40含量0.2——0.5%。NP40在0.5——1.0%时,染色体很容易析出(很黏,成胶状会裹住beads,同时粘下很多蛋白),用这样的裂解液破碎细胞则可能需要超声。通常由于习惯上避免增加不必要的操作,所以在非必要的情况下,选择前述的浓度区间。3.可适当添加EDTA,螯合金属离子保护DNA和蛋白。特殊情况下还可选择添加EGTA,螯合Ca2+研究钙相关蛋白。此外,裂解液中甘油浓度一般介于15%-20%之间。4.很多市售或自制的裂解液过于温和,需要考虑采用机械或者超声等手段提高裂解效率(超声要慎用,可能破坏弱的相互作用)。但是,有些时候裂解液的冻融又可能影响某些弱的相互作用,所以不太建议冻融裂解液——即最好裂解液制备好后立即进行coIP。当然,如果证实冻融无影响可考虑将蛋白样品保存-80度待用,这对实验日程的安排会更平易。5.裂解产物的蛋白浓度越高越好。前几日回复一贴子,不知道出于什么动因该LZ主动稀释裂解样品的蛋白浓度再IP,所幸不是做coIP。上面提到过表达会制造相互作用的假象,反过来说蛋白浓度过稀,某些相互作用就测不到(不一定是弱的相互作用)。因此,细胞的裂解效率会直接影响实验的结果。通常细胞裂解产物的蛋白浓度可达7-8mg/ml左右,但是更常规的现象是达不到这种浓度;当然不是说低于7-8mg/ml就不能进行coIP,只是需要考虑这一因素。因此,在多数情况下要尽可能避免稀释你的细胞裂解液。【补充1】:切记!实验要先有结果再来挑战极限!在不少人的提问给出的流程中,其开始的样品量往往是以6well或者60mmdish为单位的;不否认某些蛋白或复合体确实可以在如此苛刻的条件下完成coIP。但是,更多的时候不是这样子的。以我自己研究的复合体为例,其内源性IP最低起始细胞数是40-50%confluence的145mmdish;比这个数目更低,实验结果就很不稳定甚至无信号。当某些药品、试剂非常昂贵时,鄙人才会勉为其难。否则,一律2dishes100%confluence,可以elute成30ul跑两次;相互作用微弱时,15ul仅跑一次;再弱,多养几块板(CE增加抗体和beads仍可保持不变,因此只浪费培养基总比浪费一个冗长的时间走麦城要好)。后续若为质谱分析,需考虑小规模量产。二、IP前的准备工作:coIP:分为内源性蛋白的相互作用和非内源性蛋白相互作用(后者包括外源蛋白之间以及外源拖内源蛋白)。非内源性蛋白的相互作用,主要是通过过表达来实现,通常为简化实验、提高IP效率会让外源蛋白带上标签(tagged;这也是没有相应的可用于IP的内源蛋白抗体之前唯一可行的方案),因此就tag的使用而言存在很多小技巧。a.His-tagged主要用于纯化蛋白。有些人喜欢用His-tagged蛋白然后进行coIP,实际上它存在潜在的隐患。当初鄙人用Sigmaa-His(鼠单抗;免费广告)WB外源蛋白发现CE里面一塌糊涂(带型漂亮就是非常多的带),那时候还抱怨这个抗体特异性不好。后来,当了解到很多蛋白会有富含histidine的domain以后,恍然大悟,恰恰是因为效价非常好,所以很多内源性的蛋白都被该抗体识别。同理,如果用Ni-NTAbeads去PDHis-tagged的蛋白,完全有可能PD那些内源性的富含histidinedomain的蛋白,造成coIP的假象,而这样的蛋白还非常多。那么,当初开发Histag的主要目的,个人认为主要是可以用廉价的化学试剂洗脱,且Ni-NTAbeads这类非抗体类的beads成本低廉,可大量工业生产。因此,用这个tag去生产有活性的蛋白是首选。b.tandem-tagged不能用于分析钙调信号通路。tandemtag实际上从成本角度和Histag差不多,洗脱试剂价格低廉,因此可用于大规模PD之后的质谱分析,能获取最全面的相互作用的信息。然后由于其中包含钙调蛋白相互作用domain,天然会结合钙信号相关蛋白,从而干扰或掩盖靶蛋白与钙信号蛋白之间的相互作用,有一定的应用局限。当然,笔者不太清楚近年来该方法有无改进,但正是由于引入钙调domain才实现了降低成本的目的,因此猜测可能性不大。c.Myc、HA、Flag-tagged:Myc仍然会有天然的干扰,应用略有局限;相较后两者是人工合成专门用于tagged蛋白(有相应的专利,因此目前无论抗体或交联好的beads价格都非常昂贵),因此干扰最小、最常用。如需进一步细致区分,a-Flag效价比a-HA略高,因此更适合IP。当然,公司仍在努力寻找效价更好的a-HA以及IPHA的抗