传感器考试题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

实验一霍尔测速实验一、实验目的:了解霍尔组件的应用—测量转速。二、实验仪器:霍尔传感器、+5V、2~24V直流电源、转动源、频率/转速表。三、实验原理;利用霍尔效应表达式:UH=KHIB,当被测圆盘上装上N只磁性体时,转盘每转一周磁场变化N次,每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测出被测旋转物的转速。四、实验内容与步骤1.安装根据图15-1,霍尔传感器已安装于传感器支架上,且霍尔组件正对着转盘上的磁钢。图15-12.将+5V电源接到三源板上“霍尔”输出的电源端,“霍尔”输出接到频率/转速表(切换到测转速位置)。“2~24V”直流稳压电源接到“转动源”的“转动电源”输入端。3.合上主控台电源,调节2~24V输出,可以观察到转动源转速的变化。也可通过通信接口的第一通道CH1,用上位机软件观测霍尔组件输出的脉冲波形。五、实验报告1.分析霍尔组件产生脉冲的原理。2.根据记录的驱动电压和转速,作V-RPM曲线。实验二光纤传感器的测速实验一、实验目的:了解光纤位移传感器用于测转速的方法。二、实验仪器:光纤位移传感器模块、Y型光纤传感器、直流稳压电源、数显直流电压表、频率/转速表、转动源、通信接口(含上位机软件)。三、实验原理:反射式光纤位移传感器是一种传输型光纤传感器。其原理如图22-1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射面,再被反射到接收光纤,最后由光电转换器接收,转换器接收到的光源与反射体表面的性质及反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。利用光纤位移传感器探头对旋转被测物反射光的明显变化产生电脉冲,经电路处理即可测量转速。四、实验内容与步骤1.将光纤传感器按图17-1安装在传感器支架上,使光纤探头对准转动盘边缘的反射点,探头距离反射点1mm左右(在光纤传感器的线性区域内)。2.用手拨动一下转盘,使探头避开反射面(避免产生暗电流),接好实验模块±15V电源,模块输出Uo接到直流电压表输入。调节Rw使直流电压表显示为零。(Rw确定后不能改动)3.将模块输出Uo接到频率/转速表的输入“fin”。4.将2~24V直流电源先调到最小,接到三源板的“转动电源”输入端,合上主控台电源开关,逐步增大2~24V输出,用直流电压表监测转动源的驱动电压,并记下相应的频率/转速表读数。五、思考题1.分析光纤传感器测量转速原理。2.根据记录的驱动电压和转速,作V-RPM曲线。实验三电容式传感器的位移特性实验一、实验目的:了解电容传感器的结构及特点二、实验仪器:电容传感器、电容传感器模块、测微头、数显直流电压表、直流稳压电源、绝缘护套三、实验原理:电容式传感器是指能将被测物理量的变化转换为电容量变化的一种传感器它实质上是具有一个可变参数的电容器。利用平板电容器原理:dSdSCr0(11-1)式中,S为极板面积,d为极板间距离,ε0真空介电常数,εr介质相对介电常数,由此可以看出当被测物理量使S、d或εr发生变化时,电容量C随之发生改变,如果保持其中两个参数不变而仅改变另一参数,就可以将该参数的变化单值地转换为电容量的变化。所以电容传感器可以分为三种类型:改变极间距离的变间隙式,改变极板面积的变面积式和改变介质电常数的变介电常数式。这里采用变面积式,如图11-1两只平板电容器共享一个下极板,当下极板随被测物体移动时,两只电容器上下极板的有效面积一只增大,一只减小,将三个极板用导线引出,形成差动电容输出。四、实验内容与步骤1.按图11-2将电容传感器安装在电容传感器模块上,将传感器引线插入实验模块插座中。2.将电容传感器模块的输出UO接到数显直流电压表。3.接入±15V电源,合上主控台电源开关,将电容传感器调至中间位置,调节Rw,使得数显直流电压表显示为0(选择2V档)。(Rw确定后不能改动)4.旋动测微头推进电容传感器的共享极板(下极板),每隔0.2mm记下位移量X与输出电压值V的变化,填入下表11-1X(mm)V(mV)五、实验报告:1.根据表11-1的数据计算电容传感器的系统灵敏度S和非线性误差δf。实验四磁电式传感器的测速实验一、实验目的:了解磁电式传感器的原理及应用。二、实验仪器:转动源、磁电感应传感器、2~24V直流电源、频率/转速表、通信接口(含上位机软件)三、实验原理:磁电感应式传感器是以电磁感应原理为基础,根据电磁感应定律,线圈两端的感应电动势正比于线圈所包围的磁通对时间的变化率,即dtdWdtde其中W是线圈匝数,Φ线圈所包围的磁通量。若线圈相对磁场运动速度为v或角速度,则上式可改为e=-WBlv或者e=-WBS,l为每匝线圈的平均长度;B线圈所在磁场的磁感应强度;S每匝线圈的平均截面积。四、实验内容与步骤1.按下图安装磁电感应式传感器。传感器底部距离转动源4~5mm(目测),“转动电源”接到2~24V直流电源输出(注意正负极,否则烧坏电机)。磁电式传感器的两根输出线接到频率/转速表。2.调节2~24V电压调节旋钮,改变转动源的转速,通过通信接口的CH1通道用上位机软件观测其输出波形。图17-1五、实验报告1.分析磁电式传感器测量转速原理。2.根据记录的驱动电压和转速,作V-RPM曲线。实验五压电式传感器振动实验一、实验目的:了解压电式传感器测量振动的原理和方法。二、实验仪器:振动源、低频振荡器、直流稳压电源、压电传感器模块、移相检波低通模块三、实验原理:压电式传感器由惯性质量块和压电陶瓷片等组成(观察实验用压电式加速度计结构)工作时传感器感受与试件相同频率的振动,质量块便有正比于加速度的交变力作用在压电陶瓷片上,由于压电效应,压电陶瓷产生正比于运动加速度的表面电荷。四、实验内容与步骤1.压电传感器已安装在振动梁的圆盘上。2.将振荡器的“低频输出”接到三源板的“低频输入”,并按下图18-1接线,合上主控台电源开关,调节低频调幅到最大、低频调频到适当位置,使振动梁的振幅逐渐增大(直到共振)。3.将压电传感器的输出端接到压电传感器模块的输入端Ui1,Uo1接Ui2,Uo2接移相检波低通模块低通滤波器输入Ui,输出Uo接通信接口CH1,用上位机观察压电传感器的输出波形Uo。图18-1五、实验报告1.改变低频输出信号的频率,记录振动源不同振幅下压电传感器输出波形的频率和幅值。实验六气敏传感器实验一、实验目的:了解气敏传感器原理及应用。二、实验仪器:气敏传感器、酒精、棉球(自备)、差动变压器实验模块三、实验原理:本实验所采用的SnO2(氧化锡)半导体气敏传感器属电阻型气敏元件;它是利用气体在半导体表面的氧化和还原反应导致敏感元件阻值变化:若气浓度发生,则阻值发生变化,根据这一特性,可以从阻值的变化得知,吸附气体的种类和浓度。四、实验内容与步骤:1.将气敏传感器夹持在差动变压器实验模板上传感器固定支架上。2.按图32-1接线,将气敏传感器,接线端红色接+5V加热电压,黑色接地;电压输出选择±10V,黄色线接+10V电压、蓝色线接Rw1上端。3.将±15V直流稳压电源接入差动变压器实验模块中。差动变压器实验模块的输出Uo接主控台直流电压表。打开主控台总电源,预热5分钟。4.用浸透酒精的小棉球,靠近传感器,并吹2次气,使酒精挥发进入传感器金属网内,观察电压表读数变化。图32-1五、实验报告1.酒精检测报警,常用于交通片警检查有否酒后开车,若要这样一种传感器还需考虑哪些环节与因素?实验七PT100温度控制实验一、实验目的:了解PID智能模糊+位式调节温度控制原理。二、实验仪器:智能调节仪、PT100、温度源。三、实验原理:位式调节位式调节(ON/OFF)是一种简单的调节方式,常用于一些对控制精度不高的场合作温度控制,或用于报警。位式调节仪表用于温度控制时,通常利用仪表内部的继电器控制外部的中间继电器再控制一个交流接触器来控制电热丝的通断达到控制温度的目的。PID智能模糊调节PID智能温度调节器采用人工智能调节方式,是采用模糊规则进行PID调节的一种先进的新型人工智能算法,能实现高精度控制,先进的自整定(AT)功能使得无需设置控制参数。在误差大时,运用模糊算法进行调节,以消除PID饱和积分现象,当误差趋小时,采用PID算法进行调节,并能在调节中自动学习和记忆被控对象的部分特征以使效果最优化,具有无超调、高精度、参数确定简单等特点。温度控制基本原理由于温度具有滞后性,加热源为一滞后时间较长的系统。本实验仪采用PID智能模糊+位式双重调节控制温度。用报警方式控制风扇开启与关闭,使加热源在尽可能短的时间内控制在某一温度值上,并能在实验结束后通过参数设置将加热源温度快速冷却下来,可节约实验时间。当温度源的温度发生变化时,温度源中的热电阻Pt100的阻值发生变化,将电阻变化量作为温度的反馈信号输给PID智能温度调节器,经调节器的电阻-电压转换后与温度设定值比较再进行数字PID运算输出可控硅触发信号(加热)和继电器触发信号(冷却),使温度源的温度趋近温度设定值。PID智能温度控制原理框图如图26-1所示。图26-1PID智能温度控制原理框图三、实验内容与步骤1.在控制台上的“智能调节仪”单元中“控制对象”选择“温度”,并按图26-2接线。2.将2~24V输出调节调到最大位置,打开调节仪电源。3.按住3秒以下,进入智能调节仪A菜单,仪表靠上的窗口显示“”,靠下窗口显示待设置的设定值。当LOCK等于0或1时使能,设置温度的设定值,按“”可改变小数点位置,按或键可修改靠下窗口的设定值。否则提示“”表示已加锁。再按3秒以下,回到初始状态。4.按住3秒以上,进入智能调节仪B菜单,靠上窗口显示“”,靠下窗口显示待设置的上限偏差报警值。按“”可改变小数点位置,按或键可修改靠下窗口的上限报警值。上限报警时仪表右上“AL1”指示灯亮。(参考值0.5)5.继续按键3秒以下,靠上窗口显示“”,靠下窗口显示待设置的自整定开关,按、设置,“0”自整定关,“1”自整定开,开时仪表右上“AT”指示灯亮。6.继续按键3秒以下,靠上窗口显示“dP”,靠下窗口显示待设置的仪表小数点位数,按“”可改变小数点位置,按或键可修改靠下窗口的比例参数值。(参考值1)7.继续按键3秒以下,靠上窗口显示“P”,靠下窗口显示待设置的比例参数值,按“”可改变小数点位置,按或键可修改靠下窗口的比例参数值。8.继续按键3秒以下,靠上窗口显示“I”,靠下窗口显示待设置的积分参数值,按“”可改变小数点位置,按或键可修改靠下窗口的积分参数值。9.继续按键3秒以下,靠上窗口显示“d”,靠下窗口显示待设置的微分参数值,按“”可改变小数点位置,按或键可修改靠下窗口的微分参数值。10、继续按键3秒以下,靠上窗口显示“T”,靠下窗口显示待设置的输出周期参数值,按“”可改变小数点位置,按或键可修改靠下窗口的输出周期参数值。11、继续按键3秒以下,靠上窗口显示“SC”,靠下窗口显示待设置的测量显示误差休正参数值,按“”可改变小数点位置,按或键可修改靠下窗口的测量显示误差休正参数值。(参考值0)12、继续按键3秒以下,靠上窗口显示“UP”,靠下窗口显示待设置的功率限制参数值,按“”可改变小数点位置,按或键可修改靠下窗口的功率限制参数值。(参考值100%)13、继续按键3秒以下,靠上窗口显示“LCK”,靠下窗口显示待设置的锁定开关,按或键可修改靠下窗口的锁定开关状态值,“0”允许A、B菜单,“1”只允许A菜单,“2”禁止所有菜单。继续按键3秒以下,回到初始状态。14、设置不同的温度设定值,并根据控制理论来修改不同的P、1、D、T参数,观察温度控制的效果。五、实验报告1.简述温度控制原理并画出其原理框图。实验八直流全桥的应用——电子称实验一、实验目的:了解直流全桥的应用及电路的定标二、实验仪器:同实验一三、实验原理:(实验原理:全桥测量电路中,将受力性质相同的两只应变片接到电桥的对边,不同的接入邻边,

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功