伺服阀转速控制系统调研一:控制系统1简介控制系统控制系统是指由控制主体、控制客体和控制媒体组成的具有自身目标和功能的管理系统。控制系统意味着通过它可以按照所希望的方式保持和改变机器、机构或其他设备内任何感兴趣或可变化的量。控制系统同时是为了使被控制对象达到预定的理想状态而实施的。控制系统使被控制对象趋于某种需要的稳定状态。2分类控制系统控制系统有几种分类方法1、按控制原理的不同,自动控制系统分为开环控制系统和闭环控制系统。开环控制系统在开环控制系统中,系统输出只受输入的控制,控制精度和抑制干扰的特性都比较差。开环控制系统中,基于按时序进行逻辑控制的称为顺序控制系统;由顺序控制装置、检测元件、执行机构和被控工业对象所组成。主要应用于机械、化工、物料装卸运输等过程的控制以及机械手和生产自动线。闭环控制系统闭环控制系统是建立在反馈原理基础之上的,利用输出量同期望值的偏差对系统进行控制,可获得比较好的控制性能。闭环控制系统又称反馈控制系统。2、按给定信号分类,自动控制系统可分为恒值控制系统、随动控制系统和程序控制系统。恒值控制系统给定值不变,要求系统输出量以一定的精度接近给定希望值的系统。如生产过程中的温度、压力、流量、液位高度、电动机转速等自动控制系统属于恒值系统。随动控制系统给定值按未知时间函数变化,要求输出跟随给定值的变化。如跟随卫星的雷达天线系统。程序控制系统给定值按一定时间函数变化。如程控机床。3性能要求为了实现自动控制的基本任务,必须对系统在控制过程中表现出来的行为提出要求。对控制系统的基本要求,通常是通过系统对特定输入信号的响应来满足的。例如,用单位阶跃信号的过渡过程及稳态的一些特征值来表示。在确保稳定性的前提下,要求系统的动态性能和稳态性能好,即:动态过程平稳(稳定性);响应动作要快(快速性);跟踪值要准确(准确性)。4应用领域控制系统已被广泛应用于人类社会的各个领域。在工业方面,对于冶金、化工、机械制造等生产过程中遇到的各种物理量,包括温度、流量、压力、厚度、张力、速度、位置、频率、相位等,都有相应的控制系统。在此基础上通过采用数字计算机还建立起了控制性能更好和自动化程度更高的数字控制系统,以及具有控制与管理双重功能的过程控制系统。在农业方面的应用包括水位自动控制系统、农业机械的自动操作系统等。在军事技术方面,自动控制的应用实例有各种类型的伺服系统、火力控制系统、制导与控制系统等。在航天、航空和航海方面,除了各种形式的控制系统外,应用的领域还包括导航系统、遥控系统和各种仿真器。此外,在办公室自动化、图书管理、交通管理乃至日常家务方面,自动控制技术也都有着实际的应用。随着控制理论和控制技术的发展,自动控制系统的应用领域还在不断扩大,几乎涉及生物、医学、生态、经济、社会等所有领域。5发展控制系统控制系统其实从20世纪40年代就开始使用了,早期的现场基地式仪表和后期的继电器构成了控制系统的前身。现在所说的控制系统,多指采用电脑或微处理器进行智能控制的系统,在控制系统的发展史上,称为第三代控制系统,以PLC和DCS为代表,从70年****始应用以来,在冶金、电力、石油、化工、轻工等工业过程控制中获得迅猛的发展。从90年****始,陆续出现了现场总线控制系统、基于PC的控制系统等,将简要介绍各种常见的控制系统,并分析控制系统的演进过程和发展方向。6现场总线控制系统控制系统1、现场总线的特点现场总线的突出特点在于它把集中与分散相结合的DCS集散控制结构,变成新型的全分布式结构,把控制功能彻底下放到现场,依靠现场智能设备本身实现基本控制功能。现场总线的特点主要表现在以下几个方面:(1)以数字信号完全取代传统的模拟信号以数字信号完全取代传统DCS的4~20mA模拟信号,且双向传输信号。一对双绞线或一条电缆上通常可挂接多个设备,因而电缆、端子、槽盒、桥架的用量大为减少。同时,通信总线延伸到现场传感器、变送器、控制器和伺服机构,操作人员在控制室就能实现主控系统对现场设备的在线监视、诊断、校验和参数整定,节省了硬件数量与投资。(2)现场总线实现了结构上的彻底分散现场总线在结构上只有现场设备和操作管理站2个层次,将传统DCS的I/O控制站并入现场智能设备,取消了I/O模件,现场仪表都是内装微处理器的,输出的结果直接送到邻近的调节阀上,完全不需要经过控制室主控系统,实现了结构上的彻底分散。(3)总线网络系统是开放的将系统集成的权力交给用户,用户可以按自己的需要和考虑,把来自不同供应商的产品组成规模各异的系统。可以用不同厂家的现场仪表去替换出现故障的另一厂家的现场仪表。二电液伺服控制技术1电液伺服控制技术概述电液伺服控制技术作为连接现代微电子技术、计算机技术和液压技术的桥梁,已经成为现代控制技术的重要构成。由于它具有线性好、死区小、灵敏度高,动态性能好、响应快、精度高等显著优点,因而得到了广泛的应用。本文针对这一问题,利用电液伺服控制技术和计算机技术,设计了一套适用在TRT自控系统中的电液伺服控制系统。2.电液伺服控制系统的组成、作用及工作原理电液伺服控制系统由液控单元、伺服油缸、动力油占三大部分组成。液控单元包括调速阀控制单元和透平静叶控单元,每一单元均由电液伺服阀、点动用电磁阀、快关用电磁阀、油路块及底座等组成。伺服油缸为双活塞杆结构,摩擦力很小,密封性能良好。动力油站由油箱、变量油泵、滤油器、冷却器、管道阀门、检测仪表等组成。电液伺服控制系统,在TRT装置中,属于几个主要系统之一。根据主控室的指令,来实现TRT的开、停、转速控制、炉顶压力以及过程检测等系统控制。要实现以上系统的功能控制,最终将要反映在控制透平机的转速上。要控制透平机的转速,就要控制调速阀或透平静叶的开度。而控制静叶或调速阀开度的手段就是电液伺服控制系统。控制系统的精度、误差,直接影响着TRT系统各阶段过程的控制。由此可见,该系统在TRT中的地位和作用是十分重要的。由机、电、液供构成电液伺服控制系统,其控制方框图如下:由自控系统发出的指令信号,在伺服控制器中与油缸的实际位置信号相比较,成为误差的信号放大后,送入电液伺服阀。伺服阀按一定的比例将电流信号转变成液压油量量推动油缸运动。由位置传感器发出的反馈信号不断改变,直至于指令信号相等时,油缸停止运动。油缸停在指定的位置上,使透平静叶稳定在一定的开度上。油缸的直线运动、通过一套曲柄转变成阀板(静叶)的旋转运动,改变阀板或静叶的工作开度。随着系统信号的不断变化,透平静叶的开度也将不断改变,并通过静叶开度的变化,达到控制转数,控制煤气流量、控制透平出力大小的目的。其动力油系统控制图如下:3电液伺服控制系统中的主要控制设备TRT最重要的控制设备是透平机静叶和快开旁通阀。它们都是液压伺服驱动的闭环系统。主要控制设备包括伺服控制器、伺服阀、LVDT反馈位置传感器、油动机、电磁阀。通过对电磁阀的得失电控制可以实现阀门和静叶的快速开关。⑴伺服控制器:伺服控制器(选用型号为ESA-3E)主要适用于轴流压缩机静叶角度控制、TRT压差发电、位置控制以及其它相关的电液执行机构的伺服控制。该控制器中有两块线路板:PARKER控制板是对控制指令信号和传感器反馈信号进行比较,经过比例、积分运算及功率放大后,送出相应的电流信号,用于驱动伺服阀;信号调理板是用于对反馈信号进行调理,正反作用的转换,并提供指令信号丢失和反馈信号丢失两项报警功能及4~20mA位置指示信号。⑵伺服阀:在伺服阀的控制下,伺服阀会将伺服控制器输出的4~20mA信号转换成液压油流量推动伺服油缸运动,由位置传感器发出的反馈信号不断改变,直至与调节信号相等时,伺服阀输出的液压油流量信号为0,伺服油缸不再运动,从而带动透平机静叶、快开旁通阀达到预期位置,实现位置调节的目的。⑶液压锁:是一种液控方向阀,其主要作用是用来向作动筒提供系统在断电、掉压时的保护。⑷位置传感器:位置传感器(角位移传感器或线位移传感器)用来测量实际位置信号,并将其转换成对应的电流信号(4~20mA)或电压信号(-3V~3V)送至ESA-3E伺服控制器作为反馈信号。同时控制器还接收来自主控室位置指令信号调节器的4~20mA指令信号。4电液伺服控制系统的功能应用电液伺服控制系统中的功能主要是应用在对透平机的转速控制,而转速控制中的主要对象就是静叶,利用控制静叶的开度来控制透平机的转速,从而达到对高炉顶压平稳控制的目的。应用在电液伺服控制系统中的转速控制大致可分为三个过程:升速过程:系统启动条件全部具备并且机组无重故障信号,得到电气的“电气同意启动”信号和高炉主控室的“允许TRT启动”信号后,确认高炉减压阀组在自动控制下并且高炉顶压和煤气温度稳定在工艺范围内,机组具备升速条件。转速过程:分自动控制和手动控制两种方式,控制对象为静叶。①自动升速:自动升速的控制过程是一个转速PID调节器的设定值随时间不段增大的过程。这个过程的实现是通过互为反函数的静叶控制时间曲线和转速设定升速曲线来实现的。当顶压的测量值和设定值的偏差超过2Kpa的时候,转速不允许上升。静叶控制时间曲线是转速设定值与静叶控制时间的折线函数,与升速曲线互为反函数。根据当前的转速设定值计算出一定的静叶控制时间,然后根据该静叶控制时间和升速曲线,得到下一个转速设定值。如此循环,实现转速设定值的不断增加。②手动升速:手动方式运行时,给系统发出手动升速的指令,通过系统画面上手动调节入口液动阀和调节静叶的开度来控制转速。三转速控制系统1简介以速度(或转速)作为被控制量的自动控制系统。速度控制系统广泛应用于各种工业部门。例如,当用原动机(水轮机或汽轮机)驱动一个以某一频率(例如50赫)发电的交流发电机时,必须采用速度控制系统使原动机转速保持恒定,以保证发电机发出的交流电的频率符合要求。对于一台不带负载的柴油机,如不采用速度控制,就会产生飞车现象。在速度控制系统中,所期望的速度变化形式是由生产过程中对生产机械的工艺要求决定的。2主要形式速度(转速)控制的主要形式有调速、稳速和加减速控制三类。①调速指在一定的最高转速和最低转速的范围内分档(有级)地或平滑(无级)地调节生产机械转速。调速系统由生产机械和调速器所组成。调速器通过适当改变流进和流出生产机械的能量来调节它的转速。调速器不仅可使生产机械运行在某个指定的转速,而且还能在负载变动时保持转速恒定或基本不变。保持转速恒定的调速器称为无差调速器。只能使转速基本不变的调速器称为有差调速器。②稳速可使生产机械以一定的精度稳定在所需转速上运行的一种速度控制。在稳速系统中,调速器的调节作用能使生产机械的转速(速度)完全或基本上不受负载变化、电源电压变化、温度变化等外部和内部扰动的影响。③加减速控制常用于频繁起动和制动的生产机械。对加减速控制的基本要求是尽量缩短起动和制动时间以提高生产效率,并使生产机械的起动和制动过程尽量平稳。在生产过程中,从工艺要求出发,不同的生产机械对转速(速度)的控制形式具有不同的要求。例如轧钢机主、辅传动要求尽可能地缩短起动、制动和反转的时间,同时又能在较大范围内调速。而高速卷纸机则既要求有高的稳速精度和一定调速范围,又要求起动和制动平稳。3实现方法实现速度控制的方法很多,有机械的、液压的和电气的。电气的方法比较简单,控制性能好,经济,易于维护,所以应用最广。速度控制系统一般都是闭环控制系统,可以是单环或多环的反馈控制系统。速度控制系统可应用自动控制理论的方法来进行设计。速度控制系统的一些实例有调速系统、多环直流调速系统、可逆调速系统、交流频变调速系统、交流串级调速系统等。4工作原理1霍尔转速传感器的主要工作原理是霍尔效应,也就是当转动的金属部件通过霍尔传感器的磁场时会引起电势的变化,通过对电势的测量就可以得到被测量对象的转速值。霍尔转速传感器的主要组成部分是传感头和齿圈,而传感头又是由霍尔元件、永磁体和电子电路组成的。霍尔转速传感器在测量机械设备的转速时,被测量机械的金属齿轮、齿条等运动部件会经过传感器的前端,引起磁场的相应变化,当运动部件穿过霍尔元件产生磁力线较为分散的区域时,磁场相对较弱,而穿过产