光学:物理学的一个部门。光学的任务是研究光的本性,光的辐射、传播和接收的规律;光和其他物质的相互作用(如物质对光的吸收、散射、光的机械作用和光的热、电、化学、生理效应等)以及光学在科学技术等方面的应用。17世纪末,牛顿倡立“光的微粒说”。当时,他用微粒说解释观察到的许多光学现象,如光的直线性传播,反射与折射等,后经证明微粒说并不正确。1678年惠更斯创建了“光的波动说”。波动说历时一世纪以上,都不被人们所重视,完全是人们受了牛顿在学术上威望的影响所致。当时的波动说,只知道光线会在遇到棱角之处发生弯曲,衍射作用的发现尚在其后。1801年杨格就光的另一现象(干涉)作实验(详见词条:杨氏干涉实验)。他让光源S的光照亮一个狭长的缝隙S1,这个狭缝就可以看成是一条细长的光源,从这个光源射出的光线再通过一双狭缝以后,就在双缝后面的屏幕上形成一连串明暗交替的光带,他解释说光线通过双缝以后,在每个缝上形成一新的光源。由这两个新光源发出的光波在抵达屏幕时,若二光波波动的位相相同时,则互相叠加而出现增强的明线光带,若位相相反,则相互抵消表现为暗带。杨格的实验说明了惠更斯的波动说,也确定了惠更斯的波动说。同样地,19世纪有关光线绕射现象之发现,又支持了波动说的真实性。绕射现象只能借波动说来作满意的说明,而不可能用微粒说解释。20世纪初,又发现光线在投到某些金属表面时,会使金属表面释放电子,这种现象称为“光电效应”。并发现光电子的发射率,与照射到金属表面的光线强度成正比。但是如果用不同波长的光照射金属表面时,照射光的波长增加到一定限度时,既使照射光的强度再强也无法从金属表面释放出电子。这是无法用波动说解释的,因为根据波动说,在光波的照射下,金属中的电子随着光波而振荡,电子振荡的振幅也随着光波振幅的增强而加大,或者说振荡电子的能量与光波的振幅成正比。光越强振幅也越大,只要有足够强的光,就可以使电子的振幅加大到足以摆脱金属原子的束缚而释放出来,因此光电子的释放不应与光的波长有关。但实验结果却违反这种波动说的解释。爱因斯坦通过光电效应建立了他的光子学说,他认为光波的能量应该是“量子化”的。辐射能量是由许许多多分立能量元组成,这种能量元称之为“光子”。光子的能量决定于方程E=hν式中E=光子的能量,单位焦耳h=普朗光常数,等于6.624×10-34焦耳·秒ν=频率。即每秒振动数。ν=c/λ,c为光线的速度,λ为光的波长。现代的观念,则认为光具有微粒与波动的双重性格,这就是“量子力学”的基础。在研究和应用光的知识时,常把它分为“几何光学”和“物理光学”两部分。适应不同的研究对象和实际需要,还建立了不同的分支。如光谱学,发光学、光度学,分子光学、晶体光学,大气光学、生理光学和主要研究光学仪器设计和光学技术的应用光学等等。光:严格地说,光是人类眼睛所能观察到的一种辐射。由实验证明光就是电磁辐射,这部分电磁波的波长范围约在红光的0.77微米到紫光的0.39微米之间。波长在0.77微米以上到1000微米左右的电磁波称为“红外线”。在0.39微米以下到0.04微米左右的称“紫外线”。红外线和紫外线不能引起视觉,但可以用光学仪器或摄影方法去量度和探测这种发光物体的存在。所以在光学中光的概念也可以延伸到红外线和紫外线领域,甚至X射线均被认为是光,而可见光的光谱只是电磁光谱中的一部分。光源:物理学上指能发出一定波长范围的电磁波(包括可见光与紫外线、红外线和X光线等不可见光)的物体。通常指能发出可见光的发光体。凡物体自身能发光者,称做光源,又称发光体,如太阳、恒星、灯以及燃烧着的物质等都是。但像月亮表面、桌面等依靠它们反射外来光才能使人们看到它们,这样的反射物体不能称为光源。在我们的日常生活中离不开可见光的光源,可见光以及不可见光的光源还被广泛地应用到工农业,医学和国防现代化等方面。光源主要可分为:热辐射光源,例如太阳、白炽灯、炭精灯等;气体放电光源,例如,水银灯、荧光灯等。激光器是一种新型光源,具有发射方向集中、亮度高,相干性优越和单色性好的特点。几何光学:光学中以光的直线传播性质及光的反射和折射规律为基础的学科。它研究一般光学仪器(如透镜、棱镜,显微镜、望远镜、照相机)的成像与消除像差的问题,以及专用光学仪器(如摄谱仪、测距仪等)的设计原理。严格说来,光的传播是一种波动现象,因而只有在仪器的尺度远大于所用的光的波长时,光的直线传播的概念才足够精确。由于几何光学在处理成像问题上比较简单而在大多数情况下足够精确,所以它是设计光学仪器的基础。物理光学:光学中研究光的本性以及光在媒质中传播时各种性质的学科。物理光学过去也称“波动光学”,从光是一种波动出发,能说明光的干涉、衍射和偏振等现象。而在赫兹用实验证实了麦克斯韦关于光是电磁波的假说以后,物理光学也能在这个基础上解释光在传播过程中与物质发生相互作用时的部分现象,如吸收,散射和色散等,而且获得一定成功。但光的电磁理论不能解释光和物质相互作用的另一些现象,如光电效应、康普顿效应及各种原子和分子发射的特征光谱的规律等;在这些现象中,光表现出它的粒子性。本世纪以来,这方面的研究形成了物理光学的另一部门“量子光学”。光线:光源发出之光,通过均匀的介质时,恒依直线进行,叫做光的直进。此依直线前进之光,代表其前进方向的直线,称之为“光线”。光线在几何光学作图中起着重要作用。在光的直线传播,反射与折射以及研究透镜成像中,都是必不可少且要反复用到的基本手段。应注意的是,光线不是实际存在的实物,而是在研究光的行进过程中细窄光束的抽象。正像我们在研究物体运动时,用质点作为物体的抽像类似。日蚀:指地球进入月球的本影中,太阳被遮蔽的情形。当太阳、月球和地球在同一条直线上时便会发生。月球每月都会处于太阳与地球之间,不过日食并不能每月看到,这是因为白道(月球的轨道)平面对地球轨道有5°的倾角。月球可能时而在黄道之上或时而在黄道之下,故其阴影不能落在地球上。只有当太阳、月球和地球在一直线内,才能产生日蚀。如果地球的某一部分在月影之内,即发生日蚀;日蚀有全蚀、偏蚀、环蚀三种。地球上的某些地方正位于月球的影锥之内(即在基本影之内)这些地方就能观看到日全蚀。锥外虚影所射到的地方(即半影内的地方)则看到偏蚀。月球离地球较远的时候,影锥尖端达不到地面,这时从圆锥的延长线中央部分看太阳的边缘,还有狭窄的光环,这就是发生的环蚀现象。环蚀在亚洲,一百年中只能遇见十几次,在一个小地区欲见环蚀者,数百年也难得有一次机会。月影投到地面上,急速向西走,所以某一地点能够看见的全蚀时间非常的短,最长不过七分半钟,平均约3分。日全蚀带的宽度,平均约160公里。在某一地点能够看见日全蚀的机会,非常的少;平均360年只有一次。日全蚀的机会虽少,而需要观测和研究的问题甚多。例如日月相切时刻的测定。爱因斯坦引力说的证明等等。木星:在我国古代称之为岁星,是九大行星中最大也最重的行星,它的直径比地球的直径大11倍,它的质量也比地球重317倍。它的自转周期为9.842小时,是所有行星中最快的一个。木星上的大气分布很广阔,其组成含氢(H2)氮(N2)、沼气(甲烷CH4)及氨气(NH3),因此,其表面完全为昏暗所笼罩着。木星离地球的距离为628220000公里,它的赤道直径为142804公里,比地球要大11倍。虽然它是太阳系最大的一颗行星,但它却有最短的自转周期,比起地球的一天短了14小时6分钟;故知它是以极其惊人的速度不停地自转着,就是在其赤道上的某一质点最少也以时速45000公里的速度卷旋前进着。离心力在赤道地带也大得惊人,结果便造成赤道的凸出,使此行星变成如一个压扁的橙子一样。木星有四颗大卫星,被命名为木卫一、木卫二…,都能用小望远镜看到,甚至有人能用肉眼观察到。显然它们的体积必定相当可观,它们的直径木卫一约是3719公里,木卫二约是3139公里,木卫三约是5007公里,木卫四约是5184公里。在这四颗卫星中,最靠近木星表面的一颗就是木卫一。由于巨大的卫星引力。木卫一只能以42小时半的时间环绕木星一周。在这些木卫环绕木星的过程中,它们有时在木星之后所谓被掩,有时在木星的阴暗面,称为蚀,有时在木星前叫作凌犯。月蚀:当地球位于太阳和月球之间而且是满月时,进入地影的月球,就会发生月蚀。月球全部走到地影中的时候,叫做全蚀;只有一部分进入本影的时候,叫做偏蚀。月全蚀的时候可分做五象,当月球和本影第一次外切的时候,叫做初亏;第一次内切的时候叫做蚀既;月心和本影中心距离最近的时候,叫做蚀甚;当月球和本影第二次内切的时候,叫做生光;第二次外切的时候叫做复圆。偏蚀时,只有初亏、蚀甚、复圆三种现象。月蚀现象一定发生于望(阴历十五)的时候;但是望的时候,未必发生月蚀。这是因为白道(月球运行轨道)和黄道(地球运行的轨道)不相一致的缘故。但望时的月球如果距离交点太远,将不能发生月蚀;必须在某一定距离之内,才可以发生月食,这一定的界限,叫做月蚀限;这限界是随日、月、地球的距离和白道交角的变化而略有变动,最大值为12.2°,最小值为9.5°。月蚀最长时共维持3小时40分,其中1时40分为全蚀,其余两小时为偏蚀。月蚀如在地平以上发生,则因地球自转,故可见地区超过半个地球。月全蚀时因地球大气反射红光进入地影,故可见古铜色微光之月面。月蚀次数虽较少,但见蚀带极广,而日蚀带狭窄,故同一地区之居民,看见月蚀之次数较日蚀多。【光速】一般指光在真空中的传播速度。真空中的光速是物理学的常数之一,它的特征是:(1)一切电磁辐射在真空中传播的速率相同,且与辐射的频率无关;(2)无论在真空中还是在其他物质媒质中,无论用什么方法也不能使一个信号以大于光速c的速率传播;(3)真空中光速与用以进行观测的参照系无关。如果在一伽利略参照系中观察到某一光信号的速率为c=2.99793×1010厘米/秒,那么,在相对此参照系以速度v平行于光信号运动的另一个伽利略参照系中,所观测到的光信号一定也是c,而不是c+v(或c-v),这就是相对论的基础;(4)电磁学理论中的麦克斯韦方程和罗伦兹方程中都含有光速。当用高斯单位来写出这两个方程时,这一点特别明显。光在真空中的速度为c,在其他媒质中,光的速度均小于c,且随媒质的性质和光波的波长而不同。【光速之测定】伽利略曾经建议,使光行一段7.5千米的路程以测定其速度,但因所用的设备不完善而未成功。此后,直到1675年,丹麦学者罗默在巴黎求得光速之可用数值。罗默把他的观察扩展到宇宙之间,而其所用的研究对象则为木星卫星的成蚀。这些卫星之中最内层的因此,每经过此一周期之间隔,M便再次进入木星J之阴影中,而使地球上的观察者暂时无法看到它。罗默发现,当地球E环绕太阳S作公转木星卫星的成蚀要迟14秒钟会才发生;又当地球在同一时间(即至于木星卫星的实际绕转周期,则可根据地球公转到E5或E8时所作之观测求得。罗默认为此一现象,确实是由于地球从E1运行到W2之时,光之进行必须跟在地球后面追赶上去,而当地球由E6运行到E7时,则光之进行可对着地球迎着赶上所致。由此可知,E1与E2或E6与E7之间的距离,与地球在木星的卫星绕木星一周所需要的时间内运行的路程相符合。因为地球公转速度为30千米/秒,所以此二距离都是等于42.5×60×60×30(千米),约为,4600000千米。这说明光需要多走14秒钟始能赶上地球由E1至E2的这一段距离;另一方面它在地球由E6至E7向光迎头赶上的这段距离中,光之行进却能省下14秒钟。由此得到光速约稍大于300000千米/秒(4600000/14≈328000千米/秒)。当地球由E2远离木星而继续运转至E3、E4…等处时,那么当靠近E5时,则每次成蚀延迟之时间相继地累积起来,直到地球渐近于E5时成蚀延迟时间逐渐减少为零了(此乃由于木星与地球间的距离之增加,由于接近E5而渐渐减少,终于抵达E5而趋于零所致)。故成蚀延迟之时间,当地球在半年之中由E8运转至E5时,每次成蚀延迟时间相加起约等于1000秒。这也就是光从木星到达E5和光从木星到达E8这两段行程所需的时间差(亦即光行经地球公转轨道直径E5E8所需之时