红外传感器原理及在军事中的应用-1-传感器原理及应用论文红外传感器原理及在军事中的应用摘要:主要介绍了红外传感器的的基本原理和组成,并概括讨论了红外传感器技术在军事领域里的应用情况和发展。重点探讨了红外传感器技术在军事警戒系统中的应用和发展。给大家在红外传感器方面提供了一个详细的介绍,关键词:红外传感器,军事应用InfraredSensorPrincipleandinmilitaryapplicationAbstract:Mainlyintroducesthebasicprinciplesofinfraredsensorsandcomponents,anddiscussedingeneraltermsoftheinfraredsensortechnologyinthemilitaryfieldofapplicationanddevelopment.Focusontheinfraredsensortechnologyinthemilitaryalertsystem,applicationanddevelopment.ForeveryoneintheinfraredsensortoprovideadetaileddescriptionKeywords:infraredsensor,militaryapplications红外传感器原理及在军事中的应用-2-1、引言红外传感器已经在现代化的生产实践和国防建设等多个领域中发挥着它的巨大作用,人们一方面通过提高与改善传感器的技术性能;一方面通过寻找新原理、新材料、新工艺及新功能来改善传感器性能,制造出更多的传感器。而红外线传感器作为其中的一部分也必将得到更大的发展。随着探测设备和其他部分的技术的提高,红外传感器能够拥有更多的性能和更好的灵敏度,进而将带来红外传感器在各个领域中的应用越来越广,越来越好,特别是在发展国防和在军事领域中的应用也讲会随着技术的革新越来越多,不仅能够应用到战斗机、直升机、坦克、雷达等技术含量高的地方,而且也可以应用到平时的训练中去,这就要求这样的应用要往更轻便更独立的微小型系统发展,特别是在军事警戒系统中的应用和发展更加需要这样的要求。2、红外传感器技术的原理和应用2、1红外传感器技术的原理自然界中,一切温度高于绝对零度摄氏-273.16的物体都不断地辐射着红外线,这种现象称为热辐射。红外线是一种人眼不可见的光波,它是由物质内部的分子、原子的运动所产生的电磁辐射,是电磁频谱的一部分,其波段介于可见光和微波波段之间(0.76~1000微米)。通常按波长把红外光谱分成4个波段:近红外(0.76~3微米)、中红外(3~6微米)、中远红外(6~20微米)和远红外(20~1000微米)。红外技术发展到现在,已经为大家所熟知,这种技术已经在现代科技、国防和工农业等领域获得了广泛的应用。红外传感系统是用红外线为介质的测量系统,按照功能能够分成五类:(1)辐射计,用于辐射和光谱测量;(2)搜索和跟踪系统,用于搜索和跟踪红外目标,确定其空间位置并对它的运动进行跟踪;(3)热成像系统,可产生整个目标红外辐射的分布图像;(4)红外测距和通信系统;红外传感器原理及在军事中的应用-3-(5)混合系统,是指以上各类系统中的两个或者多个的组合。红外传感器的工作原理:(1)待侧目标。根据待侧目标的红外辐射特性可进行红外系统的设定。(2)大气衰减。待测目标的红外辐射通过地球大气层时,由于气体分子和各种气体以及各种溶胶粒的散射和吸收,将使得红外源发出的红外辐射发生衰减。(3)光学接收器。它接收目标的部分红外辐射并传输给红外传感器。相当于雷达天线,常用是物镜。(4)辐射调制器。对来自待测目标的辐射调制成交变的辐射光,提供目标方位信息,并可滤除大面积的干扰信号。又称调制盘和斩波器,它具有多种结构。(5)红外探测器。这是红外系统的核心。它是利用红外辐射与物质相互作用所呈现出来的物理效应探测红外辐射的传感器,多数情况下是利用这种相互作用所呈现出的电学效应。此类探测器可分为光子探测器和热敏感探测器两大类型。(6)探测器制冷器。由于某些探测器必须要在低温下工作,所以相应的系统必须有制冷设备。经过制冷,设备可以缩短响应时间,提高探测灵敏度。(7)信号处理系统。将探测的信号进行放大、滤波,并从这些信号中提取出信息。然后将此类信息转化成为所需要的格式,最后输送到控制设备或者显示器中。(8)显示设备。这是红外设备的终端设备。常用的显示器有示波器、显像管、红外感光材料、指示仪器和记录仪等。2、2红外传感器技术的应用红外传感器技术的应用领域非常广泛,下面列举了几例常见的红外线传感器的应用现状:⑴被动式热释电红外探测器中的传感器:一般人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。人体发射的10UM左右的红外线通过菲尼尔滤光片增强后聚集到红外感应源上。红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,电后续电路经检验处理后即可产生报警信号。在电子防盗、人体探测器领域中,被动式热释电红外探测器的应用非常广泛,因其价格低廉、技术性能稳定而受到广大用户和专业人士的欢迎。⑵红外线遥控鼠标器中的传感器:在机械式鼠标器底部有一个露出一部分的塑胶小球,当鼠标器在操作桌面上移动时,小球随之转动,在鼠标器内部装有三个滚轴与小球接触,其中有两个分别是X轴方向和Y轴方向滚轴,用来分别测量X轴方向和Y轴方向的移动量,另一个是空轴,仅起支撑作用。拖动鼠标器时,由于小球带动三个滚轴转动,X轴方向和Y轴方向滚轴又各带动一个转轴(称为译码轮)转动。译码轮的两侧分别装有红外发光二极管和光敏传感器,组成光电耦合器。光红外传感器原理及在军事中的应用-4-敏传感器内部沿垂直方向排列有两个光敏晶体管A和B。由于译码轮有间隙,故当译码轮转动时,红外发光二极管发出的红外线时而照在光敏传感器上,时而被阻断,从而使光敏传感器输出脉冲信号。光敏晶体管A和B被安放的位置使得其光照和阻断的时间有差异,从而产生的脉冲A和脉冲B有一定的相位差,利用这种方法,就能测出鼠标器的拖动方向。⑶照相机中的红外线传感器――夜视功能:红外夜视,就是在夜视状态下,数码摄像机会发出人们肉眼看不到的红外光线去照亮被拍摄的物体,关掉红外滤光镜,不再阻挡红外线进入CCD,红外线经物体反射后进入镜头进行成像,这时我们所看到的是由红外线反射所成的影像,而不是可见光反射所成的影像,即此时可拍摄到黑暗环境下肉眼看不到的影像。3、红外传感器技术的军事应用和发展3、1红外传感器技术的军事应用由于红外系统比雷达系统的分辨率高,隐蔽性好,且不易受电子干扰,较之可见光系统具有能识别伪装、可昼夜工作、受天气影响较小等优点。因此,在军事上得到广泛应用。其主要应用是:便携主动式红外夜视仪红外夜视仪红外夜视仪是利用光电转换技术的军用夜视仪器。它分为主动式和被动式两种:前者用红外探照灯照射目标,接收反射的红外辐射形成图像;后者不发射红外线,依靠目标自身的红外辐射形成“热图像”,故又称为”热像仪”。夜间可见光很微弱,但人眼看不见的红外线却很丰富。红外线视仪可以帮助人们在夜红外传感器原理及在军事中的应用-5-间进行观察、搜索、瞄准和驾驶车辆。红外夜视设备已广泛应用于陆、海、空三军。如用作坦克、车辆、飞机、舰船等的夜间驾驶用观察设备,轻武器的夜瞄仪,战术导弹和火炮的火控系统,战场前沿的监视和观察设备,以及单兵侦察设备等。今后将发展用凝视型焦面阵列组成的热成像系统,它的战术技术性能将进一步提高。红外制导50年代中期,美、英、法等国相继研制成功“响尾蛇”、“火光”和“马特拉”等第一代红外制导的空空战术导弹。导弹的红外导引头采用非致冷硫化铅探测器,工作波段1~3微米。它只能对敌机作尾追攻击,易受阳光干扰。随着红外技术的发展,红外制导系统日益完善。60年代以后,在三个大气窗口都相继有了可供实用的红外系统,攻击方式从尾追发展到全向攻击,制导方式也有了全红外制导(点源制导和成像制导)和复合制导(红外/电视、红外/无线电指令、红外/雷达)。红外点源制导系统已广泛应用于空空、地空、岸舰和舰舰导弹等数十种战术导弹上。预计到90年代初,点源制导系统仍将是上述战术导弹的主要制导方式之一。红外成像制导系统的研制工作始于70年代中期,它比红外点源制导系统提供的信息丰富,具有更强的识别能力和更高的制导精度。80年代初,已在“小牛”空地导弹上使用。随着焦面阵列器件的研制成功,红外成像制导系统将进一步提高识别能力,并使导弹具有自主攻击能力。红外侦察用于地(水)面、空中和空间的红外侦察设备,有红外照相机、红外扫描仪、红外望远镜、红外热像仪和主动式红外成像系统等。地面红外侦察设备主要是红外热像仪和主动式红外夜视仪。潜艇使用的红外潜望镜,已具有伸出水面迅速扫描一周,收回后再显示观察的功能。水面舰船可借助红外探测跟踪系统,监视敌方飞机和舰船的入侵。80年代初多数采用点源探测系统,迎头探测飞机的距离为20公里,尾追约100公里;观测主动段战略导弹的距离大于1000公里。红外跟踪头与电影经纬仪和激光雷达配合,还可用于靶场测量。空间红外侦察设备已红外传感器原理及在军事中的应用-6-用于导弹预警卫星、气象卫星、陆地卫星和照相侦察卫星上。导弹预警卫星可利用星上的红外望远镜实时发现飞出大气层的来袭战略导弹,并监视其飞行。军用气象卫星可利用星上的双通道行扫描仪拍摄全球云图。陆地卫星可利用星上的中远红外波段设备进行战略侦察。照相侦察卫星可利用星上的高分辨率的红外成像设备,昼夜侦察和监视对方的军事目标和军事活动。红外对抗应用红外对抗技术可使对方红外探测和识别系统的功能大大下降,甚至不起作用。对抗措施可归结为规避和欺骗两类。规避是利用伪装器材,将军事设施、武器装备等隐蔽起来,使对方探测不到己方的红外辐射源。伪装器材主要有红外伪装网和防红外涂料,80年代初期,它们仅能在1~3微米波段起作用,可对付某些红外照相机和扫描仪,但对红外热像仪却无能为力。欺骗是用与自身红外辐射波长相似但更强烈的辐射源,诱开对方的红外探测系统,这种主动对抗装置有红外诱饵和干扰机。前者如曳光弹、燃油箱等;后者是一种加调制的强红外源。它们多装在飞机和军舰上,用以引开来袭的红外制导导弹。这种主动对抗装置,直到80年代中期还难以对付在8~12微米波段工作的红外系统。对抵消红外对抗技术的作用,现代红外系统又采取了反对抗措施,如采用双色技术和多模跟踪技术等。此外,红外技术在军事上还可用于通信、报警、毒气监测、弹药引爆和区域警戒等方面。综观红外技术在军事上的应用,可归结为:为部队提供夜间行动和作战能力,为部队提供军事情报,提高武器系统的命中精度,改善武器系统抗电子干扰能力。红外技术将日益对战略战术和军队的作战行动产生影响。3、2红外传感器技术在军事应用的发展由于固体图像传感器阵列器件技术的迅速发展和成熟,焦平面阵列技术已从可见光一近红外波谱区发展到了短波红外、中波红外和长波红外区,为空间星载固体光电子图像传感器应用发展与相关系统设计提供了可靠的支撑技术。(1)可单芯片和多芯片线阵列和TDI阵列的芯片拼接和光学拼接,实现数千、上万乃至数万像元的特长阵列空间传感器;(2)已实现了特大型的大格式和大视场高分辨率的空间图像传感器,如2048×2048、4096X4096和6144×6144元的阵列;红外传感器原理及在军事中的应用-7-(3)已从可见光一近红外波谱区发展到了短波红外(SW瓜)、中波红外(MWm)和长波红外(Lw瓜)区,如可见光硅ccD、cMOs图像传感器阵列器件、InGaAs、PtSi、HgCdTe、IIlSb和Ga越As/GaAs等近红外、短波红外、中波红外和长波红外焦平面阵列,甚至HgCdTe低背景阵列已达到了2048×2048元,4096×4096元的阵列很快就能实现;(4)固体摄像阵列用作星载全景扫描和多光谱图像传感器,其分辨能力已接近10M;超光谱图像传感器应用也