传感器的特性(第二版).

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

2020/1/71第1章传感器的特性1.1传感器的静态特性1.2传感器的动态特性本章要点传感器的特性是指传感器所特有性质的总称。传感器的输入—输出特性是其基本特性,一般把传感器作为二端网络研究时,输入—输出特性是二端网络的外部特性,即输入量和输出量的对应关系。2020/1/72当被测量(输入量)为常量,或变化极慢时,一般采用静态指标体系,其输入与输出的关系为静态特性;当被测量(输入量)随时间较快地变化时,则采用动态指标体系,其输入与输出的关系为动态特性。2020/1/731.1传感器的静态特性线性度迟滞重复性灵敏度与灵敏度误差分辨率与阈值稳定性温度稳定性静态误差多种抗干扰能力2020/1/741.1.1线性度传感器的输入—输出关系或多或少地都存在非线性问题。在不考虑迟滞、蠕变等因素的情况下,其静态特性可用下列多项式代数方程来表示:y--输出量;x--输入量;a0--零点输出;a1--理论灵敏度;a2,a3…an--非线性项系数静态特性的获取线性化处理nnxaxaxaay...22102020/1/75传感器的线性度是指在全量程范围内校正曲线与拟合直线之间的最大偏差值ΔLmax与满量程输出值yFS之比。线性度也称为非线性误差,用表示,即:max100%LFSLy式中:ΔLmax——最大非线性绝对误差;yFS——满量程输出值。xymaxLmaxyFSy拟合直线校正曲线maxxL在非线性误差不太大的情况下,一般采用直线拟合的办法来线性化。2020/1/76非线性偏差的大小是以一定的拟合直线为基准直线而得出来的。拟合直线不同,非线性误差也不同。选择拟合直线的主要出发点,应是获得最小的非线性误差。另外,还应考虑使用是否方便,计算是否简便。2020/1/77常用拟合方法出发点获得最小的非线性误差拟合方法:①理论拟合;②过零旋转拟合;③端点连线拟合;④端点连线平移拟合;⑤最小二乘拟合;⑥最小包容拟合2020/1/78图1-1各种直线拟和方法(a)理论拟合(b)过零旋转拟合(c)端点拟合(d)端点平移拟合2020/1/79设拟合直线方程:0yyixy=kx+bxI最小二乘拟合法min2112niiiniibkxy最小二乘法拟合y=kx+b若实际校准测试点有n个,则第i个校准数据与拟合直线上响应值之间的残差为:Δi=yi-(kxi+b)对k和b一阶偏导数等于零,求出k和b的表达式。2i最小二乘法拟合直线的原理:使为最小值,即2i2020/1/710即得到k和b的表达式022iiiixbkxyk0122bkxybiii22iiiiiixxnyxyxnk222iiiiiiixxnyxxyxb将k和b代入拟合直线方程,即可得到拟合直线,然后求出残差的最大值Lmax即为非线性误差。2020/1/711例题:测得某检测装置的一组输入输出数据如下:试用最小二乘法拟合直线,求其线性度和灵敏度x0.92.53.34.55.76.7y1.11.62.63.24.05.022222(),()(),()iiiiiiiiiiiiiiiinxyxyxyxxykbnxxnxxykxbykxb带入数据得:,拟合直线灵敏度0.68,线性度±7%68.0k25.0b25.068.0xy%7535.0%100914.0,126.0,11.0,16.0,35.0,238.0max654321FSLyL=-0.1942020/1/7121.1.2迟滞(Hysteresis)图1-2迟滞特性传感器在正(输入量增大)反(输入量减小)行程中输出与输入曲线不重合时称为迟滞。迟滞大小一般由实验方法测得。迟滞误差一般以满量程输出的百分数表示。%10021maxFSHyH式中△Hmax—正反行程间输出的最大差值。2020/1/713产生这种现象的主要原因是由于传感器敏感元件材料的物理性质和机械零部件的缺陷所造成的,例如弹性敏感元件弹性滞后、运动部件摩擦、传动机构的间隙、紧固件松动等。迟滞误差的另一名称叫回程误差。回程误差常用绝对误差表示。检测回程误差时,可选择几个测试点。对应于每一输入信号,传感器正行程及反行程中输出信号差值的最大者即为回程误差。2020/1/7141.1.3重复性(Repeatability)yx0⊿Rmax2⊿Rmax1%100/maxFSRRy重复性误差可用正反行程的最大偏差表示,即:传感器在输入按同一方向作全量程连续多次变动时所得特性曲线不一致的程度。重复性误差也常用绝对误差表示。检测时也可选取几个测试点,对应每一点多次从同一方向趋近,获得输出值系列yi1,yi2,yi3,…,yin,算出最大值与最小值之差或3σ作为重复性偏差ΔRi,在几个ΔRi中取出最大值ΔRmax作为重复性误差。△Rmax1正行程的最大重复性偏差,△Rmax2反行程的最大重复性偏差。2020/1/7151.1.4灵敏度与灵敏度误差可见,传感器输出曲线的斜率就是其灵敏度。对线性特性的传感器,其特性曲线的斜率处处相同,灵敏度k是一常数,与输入量大小无关。表征传感器对输入量变化的反应能力。k=Δy/Δx传感器输出的变化量y与引起该变化量的输入变化量x之比即为其静态灵敏度(Sensitivity),其表达式为:2020/1/716(a)线性传感器(b)非线性传感器γs=(Δk/k)×100%由于某种原因,会引起灵敏度变化,产生灵敏度误差。灵敏度误差用相对误差表示,即2020/1/7171.1.5分辨率与阈值分辨率:传感器能检测到的最小的输入增量。分辨率可用绝对值表示,也可用与满量程的百分比表示。2020/1/718有些传感器,当输入量连续变化时,输出量只作阶梯变化,则分辨率就是输出量的每个“阶梯”所代表的输入量的大小。分辨率反映了传感器检测输入微小变化的能力。影响传感器分辨力的因素很多,如机械运动部件的摩擦和卡塞、电路中的储能元件和A/D的位数。在传感器的测量范围内,由于其输入/输出之间呈非线性关系,所以在不同输入时分辨力不同。阈值:在传感器输入零点附近的分辨率。2020/1/7191.1.6稳定性稳定性:传感器在长时间工作情况下输出量发生的变化。有时称为长时间工作稳定性或零点漂移。稳定性误差:前后两次输出之差。可用相对误差表示,也可用绝对误差来表示。2020/1/720稳定度指在规定时间内,测量条件不变的情况下,由传感器中随机性变动,周期性变动,漂移等引起输出值的变化。用精密度和观测时间长短表示。如,某传感器输出电压值每小时变化1.3mV,则其稳定度可表示为1.3mV/h。影响量指传感器由外界环境或工作条件变化引起输出值变化的量。它是由温度、湿度、气压、振动、电源电压及电源频率等一些外加环境影响所引起的。说明影响量时,必须将影响因素与输出值偏差同时表示。例如,某传感器由于电源变化10%而引起其输出值变化0.02mA,则应写成0.02mA/(U±10%U)。稳定性有两个指标:①稳定度②影响量2020/1/7211.1.7温度稳定性温度稳定性:又称为温度漂移。它是指传感器在外界温度变化情况下输出量发生的变化。温度稳定性误差用每若干℃的绝对误差或相对误差表示,每℃的误差又称温度误差系数。max100%FSYT温漂=式中Δmax——输出最大偏差;ΔT——温度变化范围;YFS——满量程输出。2020/1/7221.1.8多种抗干扰能力多种抗干扰能力:传感器对各种外界干扰的抵抗能力。例如抗冲击和振动能力、抗潮湿的能力、抗电磁场干扰的能力等,评价这些能力比较复杂,一般也不易给出数量概念,需要具体问题具体分析。2020/1/7231.1.9静态误差静态误差:传感器在其全量程内任一点的输出值与其理论输出值的偏离程度。静态误差的求取方法:把全部校准数据与拟合直线上对应值的残差,看成随机分布,求出其标准偏差σ,即:△yi--各种测试点的残差;n--测试点数。niiyn12112020/1/724△yi--各种测试点的残差;n--测试点数。静态误差的求取方法:取2σ或3σ值即为传感器静态误差。静态误差也可用相对误差表示,即:2222SRHL静态误差是一项综合性指标,基本上包含了前面叙述的非线性误差、迟滞误差、重复性误差、灵敏度误差等。所以也可以把这几个单项误差综合而得,即:%1003FSy2020/1/725与精确度有关指标:精密度、准确度和精确度(精度)精确度准确度:说明传感器输出值与真值的偏离程度。如,某流量传感器的准确度为0.3m3/s,表示该传感器的输出值与真值偏离0.3m3/s。准确度是系统误差大小的标志,准确度高意味着系统误差小。同样,准确度高不一定精密度高。精密度:说明测量传感器输出值的分散性,即对某一稳定的被测量,由同一个测量者,用同一个传感器,在相当短的时间内连续重复测量多次,其测量结果的分散程度。例如,某测温传感器的精密度为0.5℃。精密度是随机误差大小的标志,精密度高,意味着随机误差小。注意:精密度高不一定准确度高。2020/1/726精确度:是精密度与准确度两者的总和,精确度高表示精密度和准确度都比较高。在最简单的情况下,可取两者的代数和。精确度常以测量误差的相对值表示。(a)准确度高而精密度低(b)准确度低而精密度高(c)精确度高在测量中我们希望得到精确度高的结果。2020/1/727271.2传感器的动态特性传感器的动态特性是指输入量随时间变化时传感器的响应特性。一个动态特性好的传感器,其输出将再现输入量的变化规律,即具有相同的时间函数。实际的传感器,输出信号将不会与输入信号具有相同的时间函数,这种输出与输入间的差异就是所谓的动态误差。2020/1/728为了说明传感器的动态特性,下面简要介绍动态测温的问题。热电偶反映出来的温度与其介质温度的差值就称为动态误差。t/℃t1t0o0/s动态误差2020/1/72929造成热电偶输出波形失真和产生动态误差的原因,是温度传感器有热惯性(由传感器的比热容和质量大小决定)和传热热阻,使得在动态测温时传感器输出总是滞后于被测介质的温度变化。如带有套管热电偶其热惯性要比裸热电偶大得多。这种热惯性是热电偶固有的,它决定了热电偶测量快速变化的温度时会产生动态误差。影响动态特性的“固有因素”任何传感器都有,只不过它们的表现形式和作用程度不同而已。2020/1/730301.传感器的基本动态特性方程传感器的种类和形式很多,但它们的动态特性一般都可以用下述的微分方程来描述:xbdtdxbdtxdbdtxdbyadtdyadtydadtydammmmmmnnnnnn0111101111式中,a0、a1、…,an,b0、b1、….,bm是与传感器的结构特性有关的常系数。2020/1/7311)零阶系统在方程式中的系数除了a0、b0之外,其它的系数均为零,则微分方程就变成简单的代数方程,即a0y(t)=b0x(t)通常将该代数方程写成y(t)=kx(t)式中,k=b0/a0为传感器的静态灵敏度或放大系数。传感器的动态特性用方程式来描述的就称为零阶系统。2020/1/73232零阶系统具有理想的动态特性,无论被测量x(t)如何随时间变化,零阶系统的输出都不会失真,其输出在时间上也无任何滞后,所以零阶系统又称为比例系统。在工程应用中,电位器式的电阻传感器、变面积式的电容传感器及利用静态式压力传感器测量液位均可看作零阶系统。2020/1/733332)一阶系统若在方程式(2-8)中的系数除了a0、a1与b0之外,其它的系数均为零,则微分方程为)()()(001txbtyadttdya上式通常改写成为:)()()(tkxtydttdyτ—

1 / 61
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功