传热学实验(导热,对流)-2015

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

实验一稳态球体法测粒状材料的导热系数测定实验球体法测材料的导热系数是基于等厚度球状壁的一维稳态导热过程,它特别适用于粒状松散材料。球体导热仪的构造依球体冷却的不同可分为空气自由流动冷却和恒温液体强制冷却两种。本实验属后一种恒温水冷却液套球体方式。一、实验原理图1所示球壁的内外直径分别为d1和d2(半径为r1和r2)。设球壁的内外表面温度分别维持为t1和t2,并稳定不变。将傅里叶导热定律应用于此球壁的导热过程,得drdtFQdrdtr24W(1)边界条件为:r=r1t=t1r=r2t=t2由于在不太大的温度范围内,大多数工程材料的导热系数随温度的变化可按直线关系处理,对式(1)积分并代入边界条件,得)(2121ttddQmW(2)或)(2121ttddQmW/(m·℃)(3)图1原理图式中δ——球壁之间材料厚度,δ=(d2-d1)/2,m;λm——tm=(t1+t2)/2时球壁之间材料的导热系数;VIQV——加热电压,伏特V;I——加热电流,安培A;1t——内球外壁温度,℃;2t——外球内壁温度,℃。因此,实验时应测出内外球壁的温度t1和t2,然后可由式(3)得出tm时材料的导热系数λm。测定不同tm下的λm值,就可获得导热系数随温度变化的关系式。二、实验设备导热仪本体结构及量测系统示意图如图2所示。图2体结构及量测系统示意图本体由两个同心球组成。内球为黄铜厚壁空心球体,壳外径d1,球内布置热电偶、加热器及绝缘导热介质;外球为两个厚0.5~1mm的不锈钢薄壁球壳组成,内球壳内径d2,内外球壳之间充有流动的恒温水,以保持d2温度基本不变。外球d2内壁壁与内球d1之间均匀充填粒状散料。一般d2为150~200mm,d1为70~100mm,故充填材料厚为50mm左右,内球中电加热器加热,它产生的热量将通过球壁充填材料导至外球壳。为使内外球壳同心,两球壳之间有支承杆。外球壳是一种外壳加装冷却液套球,套球中通以恒温水或其他低温液体作为冷却介质。本实验为双水套球结构。为使恒温液套球的恒温效果不受外界环境温度的影响,在恒温液套球之外再加装一个保温套球。保温球套外用塑料箱体保护。实验数据表物料名称膨胀珍珠岩物料厚度δ30mm球壁内外直径d160mmd2120mm热面温度℃冷面温度℃加热功率t1t’2t”2t2=(t’2+t”2)/2I(A)U(V)Q=UI(W)次数123平均导热系数λW/(m·℃)三、实验方法及数据整理1.球壁腔内的试验材料应均匀地充满整个空腔。充填前注意测量球壳的直径,充填后应记录试料的质量,以便准确记录试料的容积质量[kg/m3]。装填试料还应避免碰断内球壳的热电偶及电源线,并特别注意保持内外球壳同心。2.改变电加热器的电压,即改变导热量,tm将随之发生变化,从而可获得不同tm下的导热系数。还可通过改变恒温液温度来改变实验工况。实验应在充分热稳定的条件下记录各项数据。3.由式(3)计算导热系数。四、思考问题1.试分析材料充填不均匀所产生的影响?2.试分析内、外球壳不同心所产生的影响?3.内、外球壳之间有支承杆,试分析这些支承杆的影响?4.如果用空气自由流动冷却的球体试分析室内空气不平静(有风)时会产生什么影响。5.采用什么方法来判断,检验球体导热过程已达到热稳定状态。6.采用恒温液套球时,为什么可以把恒温液的温度当作外球壳的表面温度?7.球体导热仪在计算导热量时,是否需要考虑热损的问题?8.球体导热仪从加热开始,到热稳定状态所需时间取决于哪些因素?实验二空气横掠单管强迫对流的换热实验热交换器中广泛使用各种管子作为传热元件,其外侧通常为流体横向掠过管子的强制对流换热方式,因此测定流体横向掠过管子时的平均换热系数是传热中的基本实验。本实验是测定空气横向掠过单圆管时代平均换热系数。一、实验目的及要求1、了解实验装置,熟悉空气流速及管壁的测量方法,掌握测试仪器、仪表的使用方法。2、通过对实验数据的综合、整理,掌握强制对流换热实验数据整理的方法。3、实验测定空气横掠单管时的平均换热系数;了解空气横掠管子时的换热规律。、二、实验原理1.根据牛顿冷却公式:)(fwtthFQ[W](2-1)得)(fwttFQh[W/(m2℃)](2-2)式中Q—对流换热的热流,[W];h—对流换热系数,[W/(m2℃)];F—对流换热表面面积,[m2];tf—流体平均温度,[℃];tw—物体表面温度,[℃]。本实验采用电加热的放热圆管,空气外掠圆管表面,当换热稳定时,测出加热电功率,即可得出对流换热热流Q,即:QIU[W](2-3)2.根据对流换热的分析,强制对流稳定时的换热规律可用下列准则关系式来表示:Nuf(Re,Pr)(2-4)对于空气,因温度变化范围不大,上式中的普朗特数Pr变化很小,可作为常数看待,故式(6-2-4)化简为:Nuf(Re)(2-4a)式中努谢尔特数hDNu雷诺数vDReh—空气横掠单管时的平均换热系数,[W/(m2℃)];v—空气来流速度,[m/s];D—特征尺寸,取管子外径,[m];—空气的导热系数,[W/(m℃)];—空气的运动粘度,[m2/s]。要通过实验确定空气横掠单圆管时的Nu与Re的关系,就需要测定不同流速v及不同管子直径D时换热系数h的变化。因此,本实验中要测量的基本量为管子所处的空气流速v、空气温度tf、管子表面温度tw及管子表面散出的热量Q。三、实验装置及测量系统实验装置本体是由一风源和试验段构成。风源为一箱式风洞,风机、稳压箱、收缩口都设置在工作台内。风箱中央为空气出风口,形成均匀流速的空气射流。试验段的风道直接放置在出风口上。风道内的空气流量由变频器19来调节,可以改变实验段风道中空气流速。图1为测定空气横掠单管平均换热系数的试验段简图。1、电源开关2、仪表开关3、交流供电开关4、交流调压旋钮5、直流大功率电源6、差压表7、交流功率表8、电流表9、电压表10、十六路温度巡检仪11、四路温度巡检仪12、毕托管13、风道14、单管试件15、供电电极16、热电偶(测管壁温)17、热电偶(测来流温)18、分流器19、变频器实验段风道13由有机玻璃制成。试验件14为不锈钢薄壁管,横置于风道中间。为了保证管子加热测量及管壁温度测量的准确性,管子用低压直流电直接通电加热,管子两端经接座与电源导板15连接,并易于更换不同直径的试验管。为了准确测定试验管上的加热功率,在离管端一定距离处有两个电压测点a、b,以排除管子两端的影响。铜-康铜电偶16设在管内,在绝热条件下准确测出管内壁温度,从而确定管外壁温度。试验管加热用的低压大功率直流电源5供给,输出电流(压)可改变对管子的加热功率,电路中串联一标准电阻18。用直流电压表9测量电阻18上的电压降,然后确定流过单管试件的电流量。试件两测压点a、b间的电压亦用直流电压表测量。为了简化测量系统,测量管内壁温度tw的热电偶,其参考点温度不是摄氏零度,而是来流空气温度tf。即热电偶的热端16设在管内,冷端17则放在风道空气中。所以热电偶反映的为管内壁温度与空气温度之差(tw-tf)。风道上装有比托管12,通过差压变送器由压力表直接读数,测出试验段气流的动压△P,以确定试验段中气流的速度v。四、实验步骤(1)连接并检查所有线路和设备,合上背板上的空气开关,打开电源、仪表开关。此时交流供电开关应处于关闭状态!打开实验台右侧的变频器开关,调节风机频率到50Hz即最大风量观察毕托管测定风压值。(2)打开大功率直流电源,将电流(压)调节旋钮旋至输出电流为20-25A。(注意:稳压电源提供的是恒流源。对试件的加热量主要看供给的电流大小,仪表会同时显示其输出电压值。)稳定后即可测量各有关数据。(3)保持加热功率不变,风机频率减小,稳定后又可测到一组数据。试验时对每一种直径的管子,空气流速可调整8个工况。加热电流(压)保持不变,亦可根据管子直径及风速大小适当调整,保持管壁与空气中有适当的温差。每调整一个工况,须待压力表,热电偶读数等稳定后方能测量各有关数据。五、实验数据的计算与整理试验用二根不锈钢管:直径D=4.0mm和6.3mm范围,管长为200mm,测压点ab间距约100mm1.空气的来流速度v根据伯努力方程,毕托管所测得的气流动压P(N/m2)与气流速度v(m/s)的关系:Pv122(Pa)(2-5)pv2(m/s)(2-6)式中为空气的密度(kg/m3),由空气温度tf查表确定。2、管壁温度tw由铜-康铜热电偶测得,试验管为有内热源的圆筒形壁,且内壁绝热,因此,内壁温度t1大于外壁温度tw。由于所用管壁很薄,仅0.2-0.3mm,且空气对外管的换热系数较小,可足够确认的认为tw=t1。3、试验管工作段ab间的发热量QQ=IUW(2-7)4、空气流过管外壁时的平均换热系数)(fwttAQhW/(m2℃)(2-8)其中:A--电压测点ab间试验管的外表面积㎡5.换热准则方程式根据每一实验工况所测得的数值可计算出相应的Nu值及Re值,Nu和Re之间的关系可近似表示为一指数方程的形式:NuCmRe(2-9)在双对数坐标纸上,以Nu为纵轴,Re为横轴,将各工况点描出,它们的规律可近似地用一直线表示,即:lglgReNuam(2-10)其中aClg如用xlgRe,yNulg,上式则可表示为:yamx(2-11)根据最小二乘法原理,系数a及m可按下式计算:axyxyxxnx222()(2-12)mxynxyxnx()22(2-13)式中:n—实验点的数目;在计算Nu及Re时所用的空气导热系数、运动粘度,可根据壁面与流体的平均温度作为tttmfw2作为定性温度查表。六、实验报告要求1.在双对数坐标纸上描绘出各实验点,并用最小二乘法求出强迫对流换热的准则方程式;2.将实验结果与有关参考书给出的空气横掠单管时换热的准则方程式和曲线图进行比较;3.对实验结果进行分析与讨论。七思考题1结合实验数据,分析对流换热系数和风速的关系。2测试得到的准则方程式误差产生的原因。八、注意事项1、首先了解试验装置的各个组成部分,并熟悉仪表的使用,以免损坏仪器。2、为确保管壁温度不至超出允许的范围,启动及工况改变时都必须注意操作顺序。启动电源之前,先将电源调节旋钮转至零位:3、启动时必须先开风机,调整风速,然后对试验管通电加热,并调整到要求的工况。注意电流表上的读数,不允许超出工作电流参考值。试验完毕时,必须先关加热电源,待试件冷却后,再关风机。4、电流极限值27安加热管壁温不能超过100℃,皮托管压差不能小于25kPa工况试件壁温tw(℃)空气温度tf(℃)电流(A)电压(V)压差(Pa)试件壁温tw(℃)空气温度tf(℃)电流(A)电压(V)压差(Pa)12345678试件直径mm试件有效长度100mm有效面积m2试件直径mm试件有效长度100mm有效面积m2此表每个试件填写一张工况空气流速Vm/s定性温度tm℃空气密度kg/m3空气导热系数λw/(m℃)空气运动粘度νm2/s加热功率QW对流换热系数hw/(m2℃)努谢尔特数雷诺数12345678

1 / 12
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功