高中物理必修二知识点总结第一模块:曲线运动、运动的合成和分解一曲线运动1、定义:运动轨迹为曲线的运动。2、物体做曲线运动的方向:做曲线运动的物体,速度方向始终在轨迹的切线方向上。3、曲线运动的性质:曲线运动一定是变速运动。(选择题)由于曲线运动速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的加速度必不为零,所受到的合外力必不为零。(选择题)4、物体做曲线运动的条件物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。(选择题)5、分类⑴匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。⑵非匀变速曲线运动:物体在变力(大小变、方向变或两者均变)作用下所做的曲线运动,如圆周运动。二运动的合成与分解(小船渡河是重点)1、运动的合成:从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。运动合成重点是判断合运动和分运动,一般地,物体的实际运动就是合运动。(做题依据)2、运动的分解:求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。3、合运动与分运动的关系:⑴运动的等效性⑵等时性⑶独立性⑷运动的矢量性4、运动的性质和轨迹⑴物体运动的性质由加速度决定(加速度为零时物体静止或做匀速运动;加速度恒定时物体做匀变速运动;加速度变化时物体做变加速运动)。⑵物体运动的轨迹(直线还是曲线)则由物体的速度和加速度的方向关系决定(速度与加速度方向在同一条直线上时物体做直线运动;速度和加速度方向成角度时物体做曲线运动)。第二模块:平抛运动平抛运动1、定义:平抛运动是指物体只在重力作用下,从水平初速度开始的运动。2、条件:a、只受重力;b、初速度与重力垂直.可推广为物体做类平抛运动的条件:物体受到的恒力方向与物体的初速度方向垂直。3、运动性质:尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速度g,因而平抛运动是一个匀变速曲线运动。ga4、研究平抛运动的方法:通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向;类平抛也是如此)的匀速直线运动,一个是竖直方向(沿着恒力方向;类平抛也是如此)的匀加速直线运动。水平方向和竖直方向的两个分运动既具有独立性,又具有等时性.VyxSOxx2/VyV0Vx=V0P()xy,θα5、平抛运动的规律(所有同学必须掌握,必考内容)①水平速度:vx=v0,竖直速度:vy=gt合速度(实际速度)的大小:22yxvvv物体的合速度v与x轴之间的夹角为:0tanvgtvvxy②水平位移:tvx0,竖直位移221gty合位移(实际位移)的大小:22yxs物体的总位移s与x轴之间的夹角为:02tanvgtxy可见,平抛运动的速度方向与位移方向不相同。而且tan2tan而26、平抛运动的几个结论①落地时间由竖直方向分运动决定:(只与抛出点与地面的高度h有关)由221gth得:ght2②水平飞行射程由高度和水平初速度共同决定:ghvtvx200③平抛物体任意时刻瞬时速度v与平抛初速度v0夹角θa的正切值为位移s与水平位移x夹角θ正切值的两倍即tan2tan④平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。证明:221tan20xssgtvgt⑤平抛运动中,任意一段时间内速度的变化量Δv=gΔt,方向恒为竖直向下(与g同向)任意相同时间内的Δv都相同(包括大小、方向),如右下图。⑥以不同的初速度,从倾角为θ的斜面上沿水平方向抛出的物体,再次落到斜面上时速度与斜面的夹角a相同,与初速度无关。(飞行的时间与速度有关,速度越大时间越长。)V1V0V2V3V△V△V△如左上图:所以tan20gvt0)tan(vgtvvaxy所以tan2)tan(a,θ为定值故a也是定值与速度无关。⑦速度v的方向始终与重力方向成一夹角,故其始终为曲线运动,随着时间的增加,tan变大,,速度v与重力的方向越来越靠近,但永远不能到达。⑧从动力学的角度看:由于做平抛运动的物体只受到重力,因此物体在整个运动过程中机械能守恒。7、平抛运动的实验探究①如图所示,用小锤打击弹性金属片,金属片把A球沿水平方向抛出,同时B球松开,自由下落,A、B两球同时开始运动。观察到两球同时落地,多次改变小球距地面的高度和打击力度,重复实验,观察到两球落地,这说明了小球A在竖直方向上的运动为自由落体运动。αθAv0θvxvyyxv②如图,将两个质量相等的小钢球从斜面的同一高度处由静止同时释放,滑道2与光滑水平板吻接,则将观察到的现象是A、B两个小球在水平面上相遇,改变释放点的高度和上面滑道对地的高度,重复实验,A、B两球仍会在水平面上相遇,这说明平抛运动在水平方向上的分运动是匀速直线运动。8、类平抛运动(1)有时物体的运动与平抛运动很相似,也是在某方向物体做匀速直线运动,另一垂直方向做初速度为零的匀加速直线运动。对这种运动,像平抛又不是平抛,通常称作类平抛运动。(2)类平抛运动的受力特点:物体所受合力为恒力,且与初速度的方向垂直。(3)类平抛运动的处理方法:在初速度0v方向做匀速直线运动,在合外力方向做初速度为零的匀加速直线运动,加速度Fam合。处理时和平抛运动类似,但要分析清楚其加速度的大小和方向如何,分别运用两个分运动的直线规律来处理。第三模块:圆周运动做圆周运动题目时要知道向心力的来源,匀速圆周运动物体所受的合力方向即向心力方向,要会用矢量合成与分解的方法就向心力(或知道向心力求某个分力),此部分为本章关键,同学们务必理解并多做题目加深理解。一匀速圆周运动1、定义:物体运动轨迹为圆称物体做圆周运动。物体做圆周运动的条件:三个基本点物体受到的合外力大小不变,方向始终垂直于物体的速度方向,且合外力方向始终在同一个平面内(即在物体圆周运动的轨道平面内)2、分类:⑴匀速圆周运动:(匀速圆周运动是重点)质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。物体在大小恒定而方向总跟速度的方向垂直的外力作用下所做的曲线运动。⑵变速圆周运动:如果物体受到约束,只能沿圆形轨道运动,而速率不断变化——如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直.(此部分要掌握竖直平面内的圆周运动及生活中的圆周运动)3、描述匀速圆周运动的物理量(1)线速度(v):知道定义,定义式,是矢量(方向沿切线方向)。(2)角速度(ω,又称为圆频率):知道定义,定义式,是矢量,物理意义(描述质点绕圆心转到的快慢)。(3)周期(T):做匀速圆周运动的物体运动一周所用的时间叫做周期。(4)频率(f,或转速n):物体在单位时间内完成的圆周运动的次数。各物理量之间的关系:rtrvfTtrfTrtsv2222注意:计算时,均采用国际单位制,角度的单位采用弧度制。(5)圆周运动的向心加速度①定义:做匀速圆周运动的物体所具有的指向圆心的加速度叫向心加速度。②大小:rrvan22rn222222rfrTv③方向:其方向时刻改变且时刻指向圆心。对于一般的非匀速圆周运动,公式仍然适用,为物体的加速度的法向加速度分量;物体的另一加速度分量为切向加速度a,表征速度大小改变的快慢(对匀速圆周运动而言,a=0)(6)圆周运动的向心力匀速圆周运动的物体受到的合外力常常称为向心力,向心力的来源可以是任何性质的力,对于一般的非匀速圆周运动,物体受到的合力的法向分力nF提供向心加速度(下式仍然适用),切向分力F提供切向加速度。向心力的大小为:rmrvmmaFnn22rfmrTmmv2222);向心力的方向时刻改变且时刻指向圆心。(根据矢量合成求出Fn在根据题目要求即可解题)二离心运动(理解该现象)1、定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力情况下,就做远离圆心的运动,这种运动叫离心运动。2、本质:①离心现象是物体惯性的表现。②离心运动并非沿半径方向飞出的运动,而是运动半径越来越大的运动或沿切线方向飞出的运动。③离心运动并不是受到什么离心力,根本就没有这个离心力。3、条件:当物体受到的合外力nnmaF时,物体做匀速圆周运动;当物体受到的合外力nnmaF<时,物体做离心运动(洗衣机脱水)当物体受到的合外力nnmaF>时,物体做近心运动(卫星的变轨)实际上,这正是力对物体运动状态改变的作用的体现,外力改变,物体的运动情况也必然改变以适应外力的改变。第四模块:万有引力定律人造地球卫星一基础知识1、开普勒行星运动三定律简介(轨道、面积、比值)第一定律:所有行星都在椭圆轨道上运动,太阳则处在这些椭圆轨道的一个焦点上;第二定律:行星沿椭圆轨道运动的过程中,与太阳的连线在单位时间内扫过的面积相等;第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.即kTr23(k只与中心天体的质量有关,与其他任何都无关,易考选择题)2、万有引力定律及其应用(知道内容,公式及适用条件)(1)内容:宇宙间的一切物体都是相互吸引的,两个物体间的引力大小跟它们的质量成积成正比,跟它们的距离平方成反比,引力方向沿两个物体的连线方向。2rMmGF(2)定律的适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r应为两物体重心间的距离.对于均匀的球体,r是两球心间的距离.当两个物体间的距离无限靠近时,不能再视为质点,万有引力定律不再适用,不能依公式算出F近为无穷大。(3)地球自转对地表物体重力的影响。(此部分了解,考选择题,尤其是赤道处)重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,在纬度为的地表处,万有引力的一个分力充当物体随地球一起绕地轴自转所需的向心力F向=mRcos·ω2(方向垂直于地轴指向地轴),而万有引力的另一个分力就是通常所说的重力mg,其方向与支持力N反向,应竖直向下,而不是指向地心。由于纬度的变化,物体做圆周运动的向心力F向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g随纬度变化而变化,从赤道到两极R逐渐减小,向心力mRcos·ω2减小,重力逐渐增大,相应重力加速度g也逐渐增大。在赤道处,物体的万有引力分解为两个分力F向和m2g刚好在一条直线上,则有F=F向+m2g,所以m2g=F一F向=G221rmm-m2Rω自2。物体在两极时,其受力情况如图丙所示,这时物体不再做圆周运动,没有向心力,物体受到的万有引力F引和支持力N是一对平衡力,此时物体的重力mg=N=F引。综上所述重力大小:两个极点处最大,等于万有引力;赤道上最小,其他地方介于两者之间,但差别很小。OO′NF心ωmF引mg甲NωoF引丙NF引oω乙重力方向:在赤道上和两极点的时候指向地心,其地方都不指向地心,但与万有引力的夹角很小。由于地球自转缓慢,物体需要的向心力很小,所以大量的近似计算中忽略了自转的影响,二万有引力定律的应用:基本方法:卫星或天体的运动看成匀速圆周运动,F万=F心(类似原子模型)方法:轨道上正常转:rTmrmrvmrMmG222224地面附近:G2RMm=mgGM=gR2(黄金代换式);只要题目中出现地面附近几个字必须用上式框中内容是本章关键,所有题目都是围绕上面的等式设置的(1)天体表面重力加速度问题通常的计算中因重力和万有引力相差不大,而认为两者相等,即m2g=G221Rmm,g=GM/R2常用来计算星球表面重力加速度的大小,在地球的同一纬度处,g随物体离地面高度