·3-1·3.1KnowledgeInferenceKnowledgeUtilization1234·3-2·3.2SOPEN(n)OPENCLOSEDnOPEN,nn?OPENOPEN=NIL?3-1(1)(2)G(x)(GeneratorFunctions)(3)E(x)(EvaluationFunctions)(1)SGSOPEN(2)CLOSED(3)LOOPOPEN(4)OPEN·3-3·OPENCLOSEDn(5)nGnS(6)G(x)nnMMnG(7)G(OPENCLOSED)MnMOPENOPENCLOSEDMnCLOSEDMG(8)E(x)OPENOPEN(9)GOLOOP3-1(6)(8)OPEN(4)3.33-213-22OPENCLOSEDOPENCLOSED3-3(1)OPEN(2)OPEN(3)OPEN(n)CLOSED(4)n·3-4·(5)nOPENn(2)n(2)SOPENOPENn,CLOSEDn?OPEN=NIL?n,OPEN,n3-333-43312345678)(xGS0Sg28312314847657653-4)(xG43-513-5nn23-6(1)SOPEN(2)OPEN·3-5·(3)OPEN(n)CLOSEDSOPENOPENn,CLOSEDOPEN=NIL?n,OPEN,nn?3-6(4)n(5)nOPENn(2)n(2)33-4)(xG)(xG43-713-723-8(1)SOPENd(S)=0(2)OPEN(3)OPEN(n)CLOSED(4)n·3-6·(5)ndm(2)(6)nn′OPENnn′n1(2)n(2)33-4dm=5)(xG4dm=dmdmdmdmdm=dgSOPEN,d(S)=0OPENn,CLOSEDOPEN=NIL?n,n'OPEN,n,n?d(n)=dm?d(n')=d(n)+13-8Sg1d(Sg1)dmSg2d(Sg2)d(Sg1)d(Sg2)SgmSgmS03.4·3-7·SOPEN,C(S)=0OPENn,CLOSEDOPEN=NIL?n,OPENC(x)(n?n?)n3-9)(xE=)(xCx)(xC)(xE=)(xdx)(xd3-93-93-10AEAEGxxx3-11DCABE3324475103-10DSABC3324751001110C2C2D2D2B2B2E2E2''''D3D3C3E3E3E3B3''''4E4'E4E''445444445551010323756915141011206713101511121111123-113-111S0A01B1C1D1237B1CB1=22B12C2D256C1(3)C2(5)D2(6)D1(7)C13C12B2D’2E26713C2(5)·3-8·D2(6)B2(6)D1(7)D’2(7)E2(13)C24C23D3E3915D2(6)B2(6)D1(7)D’2(7)D3(9)E2(13)E3(15)D2123E’3C(E’3)=2+4+5=11ESgAEA0B1D2E’3C(E’3)=113.51E(x)E(x)NN)(xE=grad)(xH)(xH·3-9·N=SN,E(x)NCLOSED,N=N?N?0g3-123283147653231847653283147654283147653832147654283714653832147654832147653813247653813247654813247654813264752138247654813724651138247652138247650123847654283164753-1323-1233-4)(xE=)(xhx)(xh3-1313-142E(x)·3-10·E(x)x1)g(x)S0x2)h(x)xSgE(x)E(x)=)()(xhwxgv•+•vwvwvwvwE(x)g(x)vSOPEN,E(S)OPENN,CLOSEDOPEN=NIL?N,E(x)N,N=N?N?E(x)OPENOPEN,N,00ig3-14E(x)=g(x)=d(x)d(x)S0xh(x)=0w=0E(x)h(x)wE(x)=h(x)=N(x)N(x)xN(x)=maxE(x)g(x)g(x)=0v=0g(x)h(x)·3-11·33-4E(x)=d(x)+h(x)d(x)xh(x)x3-150+3=3283147651+3=4231847651+3=4283147651+4=5283147652+3=5832147652+4=6283714653+1=4123847654+0=0123847654+2=6123784652+2=4231847652+4=6231847651+4=5283164753-153.61·3-12·1)SFGSFG2)3)2123ABCABC133-16123ABC123ABC3-16P1P2P3CBAP1P2P3P1P2P3123123111333MOVEXMNXMNXABCM123N123111333(1)AB12111122(2)C13122322(3)AB23322333·3-13·(1)(3)3-173-171S0SgS0FSgS0FSgS0f0S1SifiSi+1Sn-1fn-1SgSiSi-1i12n∈ifF3-18·3-14·3-1823-19S0SgS0SgS1SgS12S1S0S11BB1BiSi-1S1BnSiSn-1SgS03-1912·3-15·343.712·3-16·3(1)(2)(3)S0S1=SgS0Ff01∈Ff1∈gS0S01SgSg1S=0?Sg{S0}F{Sg}S0FSgS1=SgS0FSFf01∈Ff1∈g0SgS01Sg101f0SS01⎯→⎯1fSS1ggg⎯→⎯3-20·3-17·203.83-13-124812481010241.11061.11091001.310302.5910602.591090z9=3.6105z10120z107611♦♦♦♦♦••100.1µs1ns10-12ns10-88ns1=10161003-2T(n)=2nn!nnT(n)=n2n3n4·3-18·3-2Nn2n3n42nn!nn1111211101021031041024362880010101001041061081.310309.310157102003-33-31001000nN1100N11000N1n2N210N231.6N2n3N3464N310N32nN46.64N49.97N43.91965PQ¬PRP¬PQRPQ¬PRP¬PQR·3-19·P¬PPQ¬PRQRTFTR(=T)TFTQ(=T)TTx∀(brick(x)((on(x,y)y∃¬pyramid(y))(on(x,y)on(y,x))¬y∃(¬brick(y)y∀¬equal(x,y))))(1)PQ⇔¬PQx∀(brick(x)((on(x,y)¬y∃¬pyramid(y))¬(on(x,y)on(y,x))y∃((¬brick(y))y∀¬¬equal(x,y))))(2)))x(P(x)x(xP¬∀⇔¬∃¬(PQ)⇔¬P¬Qx∀(brick(x)((on(x,y)¬y∃¬pyramid(y))(on(x,y)y∀¬¬on(y,x))(brick(y)y∀¬equal(x,y))))(3)y∃(on(x,y)¬pyramid(y))xy∃y∃(on(x,y’)¬pyramid(y’))y’·3-20·y’xx∀(on(x,f(x))¬pyramid(f(x)))f(x)=support(x)x∀(brick(x)(on(x,support(x))¬¬pyramid(support(x))(on(x,y)y∀¬¬on(y,x))(brick(y)y∀¬equal(x,y))))(4)x∀(brick(x)(on(x,support(x))¬¬pyramid(support(x))(on(x,y)y∀¬¬on(y,x))(brick(z)z∀¬equal(x,z))))(5)x∀y∀z∀(¬brick(x)(on(x,support(x))¬pyramid(support(x))(on(x,y)¬¬on(y,x))(brick(z)¬equal(x,z))))(6)P(Q1Qn)(PQ⇔1)(PQn)x∀y∀z∀((¬brick(x)(on(x,support(x)))(¬brick(x)¬pyramid(support(x)))(¬brick(x)¬on(x,y)¬on(y,x))(¬brick(x)brick(z)¬equal(x,z)))(7)x∀(brick(x)(on(x,support(x)))¬x∀(brick(x)¬pyramid(support(x)))¬x∀y∀(brick(x)¬on(x,y)¬¬on(y,x))x∀z∀(brick(x)brick(z)¬¬equal(x,z))(8)x∀(brick(x)(on(x,support(x)))¬w∀(brick(w)pyramid(support(w)))¬¬u∀y∀(brick(u)¬on(u,y)¬¬on(y,u))v∀z∀(brick(v)brick(z)¬¬equal(v,z))(9)¬brick(x)(on(x,support(x))¬brick(w)¬pyramid(support(w))¬brick(u)¬on(u,y)on(y,u)¬¬brick(v)brick(z)equal(v,z)¬·3-21·man(x)man(Lira)xLiraman(Lira)121man(Marcus)2Pompeian(Marcus)3Pompeian(x)Roman(x)x∀⇒¬Pompeian(x1)Roman(x1)PQ⇔¬PQ4ruler(Caesar)5Roman(x)loyalto(x,Caesar)hate(x,Caesar)x∀⇒¬Roman(x2)loyalto(x2,Caesar)hate(x2,Caesar)PQ⇔¬PQ6loyalto(x,y)x∀y∃⇒loyalto(x3,f(x3))7man(x)ruler(y)tryassasinate(x,y)¬loyalto(x,y)x∀y∀⇒¬man(x4)ruler(y¬1)tryassasinate(x¬4,y1)¬loyalto(x4,y1)PQ⇔¬PQ8tryassasinate(Marcus,Caesar)hate(Marcus,Caesar)¬hate(Marcus,Caesar)3-21·3-22·¬hate(Marcus,Caesar)5¬Roman(x2)loyalto(x2,Caesar)hate(x2,Caesar)X2/Marcus3¬Pompeian(x1)Roman(x1)¬Roman(Marcus)loyalto(Marcus,Caesar)X1/Marcus2Pompeian(Marcus)¬Pompeian(Marcus)loyalto(Marcus,Caesar)loyalto(Marcus,Caesar)7¬man(x4)¬ruler(y1)tryassasinate(x4,y1)¬loyalto(x4,y1)¬X4/Marcusy1/Caesar1man(Marcus)¬man(Marcus)¬ruler(Caesar)¬tryassasinate(Marcus,Caesar)4ruler(Caesar)¬ruler(Caesar)¬tryassasinate(Marcus,Caesar)¬tryassasinate(Marcus,Caesar)8tryassasinate(Marcus,Caesar)3-213.10·3-23·n-1nBOLDHAIRn-1BOLDHAIRnBOLDHAIR0n=1100100TBOLDHAIRnn10TBOLDHAIRn-1=TBOLDHAIRn+TBOLDHAI