人教版九年级数学上册知识点总结

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1人教版九年级数学上册知识点总结21.1二次根式概念:我们把形如a(a≥0)的式子叫做二次根式。二次根式a的实质是一个非负数a的算术平方根。其中“”叫做二次根注:①二次根式是在形式上定义的,必须含有二次根号“”。如4是二次根式,虽然4=2,但2不是二次根式。②被开方数a必须是非负数,即a≥0.如3就不是二次根式,但式子)3(2是二次根式。提示:判断是不是二次根式,一看形式,二看数值,即形式上要有二次根号,被开方数要是非负数。二次根式的性质(1)a≥0(a≥0),(非负性)。(2)(a)2=a(a≥0),(3)a2=a(a≥0),(4)代数式定义:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数和表示数的字母连接起来的式子,叫做代数式。21.2二次根式的乘除二次根式的乘法法则:a·b=ab(a≥0,b≥0),积的算术平方根的性质:ab=a·b(a≥0,b≥0),二次根式的除法法则:ba=ba(a≥0,b>0),商的算术平方根的性质ba=ba(a≥0,b>0),最简二次根式必须满足以下两个条件:⑴被开方数不含分母;⑵被开方数中不含能开得尽方的因数或因式。22.1一元二次方程知识点一一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。注意一下几点:①只含有一个未知数;②未知数的最高次数是2;③是整式方程。知识点二一元二次方程的一般形式一般形式:ax2+bx+c=0(a≠0).其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。知识点三一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。方程的解的定义是解方程过程中验根的依据。22.2降次——解一元二次方程22.2.1配方法直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。配方法概念:通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。配方法的一般步骤可以总结为:一移、二除、三配、四开。22.2.2公式法公式法概念:对于一元二次方程ax2+bx+c=0(a≠0),如果b2-4ac≥0,那么方程的两个根为x=aacbb242,这个公式叫做一元二次方程的求根公式,利用求根公式,可以由一元二方程的系数a,b,c的值直接求得方程的解,这种解方程的方法叫做公式法。一元二次方程根的判别概念:式子b2-4ac叫做方程ax2+bx+c=0(a≠0)根的判别式,通常用希腊字母△表示它,即△=b2-4ac.△>0,方程ax2+bx+c=0(a≠0)有两个不相等的实数根一元二次方程△=0,方程ax2+bx+c=0(a≠0)有两个相等的实数根根的判别式△<0,方程ax2+bx+c=0(a≠0)无实数根222.2.3因式分解法概念:把一元二次方程的一边化为0,而另一边分解成两个一次因式的积,进而转化为求两个求一元一次方程的解,这种解方程的方法叫做因式分解法。因式分解法的详细步骤:①移项,将所有的项都移到左边,右边化为0;②把方程的左边分解成两个因式的积,可用的方法有提公因式、平方差公式和完全平方公式;③令每一个因式分别为零,得到一元一次方程;④解一元一次方程即可得到原方程的解。22.2.4一元二次方程的根与系数的关系若一元二次方程x2+px+q=0的两个根为x1,x2,则有x1+x2=-p,x1x2=q.若一元二次方程a2x+bx+c=0(a≠0)有两个实数根x1,x2,则有x1+x2=,ab,x1x2=ac23.1图形的旋转旋转的定义:在平面内,把一个平面图形绕着平面内某一点O转动一个角度,就叫做图形的旋转,点O叫做旋转中心,转动的角叫做旋转角。我们把旋转中心、旋转角度、旋转方向称为旋转的三要素。旋转的性质:(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等。理解以下几点:(1)图形中的每一个点都绕旋转中心旋转了同样大小的角度。(2)对应点到旋转中心的距离相等,对应线段相等,对应角相等。(3)图形的大小和形状都没有发生改变,只改变了图形的位置。旋转有两条重要性质:(1)任意一对对应点与旋转中心所连线段的夹角等于旋转角;(2)对应点到旋转中心的距离相等。23.2中心对称中心对称的定义:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。注意:中心对称指的是两个图形的位置关系;只有一个对称中心;绕对称中心旋转180°两个图形能够完全重合。中心对称的性质:(1)关于中心对称的两个图形上的对应点的连线都经过对称中心,并且都被对称中心平分;(2)关于中心对称的两个图形能够互相重合,是全等形;(3)关于中心对称的两个图形,对应线段平行(或共线)且相等。中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。关于原点对称的点的坐标:在平面直角坐标系中,如果两个点关于原点对称,它们的坐标符号相反,即点p(x,y)关于原点对称点为(-x,-y)。24.1.1圆圆的定义:第一种:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫作圆。固定的端点O叫作圆心,线段OA叫作半径。第二种:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合。圆的相关概念:⑴弦:连接圆上任意两点的线段叫做弦(弦是线段),经过圆心的弦叫作直径。⑵弧:圆上任意两点间的部分叫做圆弧,简称弧(弧是曲线)。圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。⑶等圆:等够重合的两个圆叫做等圆。⑷等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。24.1.2垂直于弦的直径圆的对称性:圆是轴对称图形,任何一条直径所在直线都是它的对称轴。垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。如图所示,直径为CD,AB是弦,且CD⊥AB,AM=BM垂足为MAC=BCAD=BD垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧24.1.3弧、弦、圆心角弦、弧、圆心角的关系:①弦、弧、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。②在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余的各组量也相等。③注意不能忽略同圆或等圆这个前提条件,如果丢掉这个条件,即使圆心角相等,所对的弧、弦也不一定相等,比如两个同心圆中,MCABD韦达定理3两个圆心角相同,但此时弧、弦不一定相等。24.1.4圆周角(1)圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。(2)圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对弦是直径。圆周角定理揭示了同弧或等弧所对的圆周角与圆心角的大小关系。“同弧或等弧”是不能改为“同弦或等弦”的,否则就不成立了,因为一条弦所对的圆周角有两类。(3)圆内接多边形:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。(4)圆内接四边形的性质:圆内接四边形的对角互补。24.2.1点和圆的位置关系(1)点与圆的位置关系有:点在圆外,点在圆上,点在圆内三种。(2)用数量关系表示:若设⊙O的半径是r,点P到圆的距离OP=d,则有:点P在圆外d>r;点p在圆上d=r;点p在圆内d<r。24.2.2直线和圆的位置关系(1)直线与圆的位置关系有:相交、相切、相离三种。(2)用数量关系表示:若设⊙O的半径是r,直线l与圆心0的距离为d,则有:直线l和⊙O相交d<r;直线l和⊙O相切d=r;直线l和⊙O相离d>r。切线的判定和性质(1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。(2)切线的性质定理:圆的切线垂直于过切点的半径。(3)切线的其他性质:切线与圆只有一个公共点;切线到圆心的距离等于半径;经过圆心且垂直于切线的直线必过切点;必过切点且垂直于切线的直线必经过圆心。切线(1)切线长的定义:经过园外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。(2)切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。(3)注意:切线和切线长是两个完全不同的概念,必须弄清楚切线是直线,是不能度量的;切线长是一条线段的长,这条线段的两个端点一个是在圆外一点,另一个是切点。三角形的内切圆定义:与三角形各边都相切的圆叫做三角形的内切圆。这个三角形叫做圆的外切三角形。三角形的内心:三角形内切圆的圆心叫做三角形的内心。注意:三角形的内心是三角形三条角平分线的交点,所以当三角形的内心已知时,过三角形的顶点和内心的射线,必平分三角形的内角。24.2.3圆和圆的位置关系(1)圆与圆的位置关系有五种:①如果两个圆没有公共点,就说这两个圆相离,包括外离和内含两种;②如果两个圆只有一个公共点,就说这两个圆相切,包括内切和外切两种;③如果两个圆有两个公共点,就说这两个圆相交。(2)圆与圆的位置关系可以用数量关系来表示:若设两圆圆心之间的距离为d,两圆的半径分别是r1r2,且r1<r2,则有两圆外离d>r1+r2两圆外切d=r1+r2两圆相交r2-r1<d<r1+r2两圆内切d=r2-r1两圆内含d<r2-r124.3正多边形和圆正多边形的外接圆和圆的内接正多边形正多边形与圆的关系非常密切,把圆分成n(n是大于2的自然数)等份,顺次连接各分点所得的多边形是这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。正多边形的中心:一个正多边形的外接圆的圆心叫做这个正多边形的中心。正多边形的半径:外接圆的半径叫做正多边形的半径。正多边形的中心角:正多边形每一条边所对的圆心角叫做正多边形的中心角。正多边形的边心距:中心到正多边形一边的距离叫做正多边形的边心距。正多边形的性质(1)正n边形的半径和边心距把正多边形分成2n个全等的直角三角形。(2)所有的正多边形都是轴对称图形,每个正n边形共有n条对称轴,每条对称轴都经过正n边形的中心;当正n边形的边数为偶数时,这个正n边形也是中心对称图形,正n边形的中心就是对称中心。4(3)正n边形的每一个内角等于nn180)2(,中心角和外角相等,等于n360。24.4弧长和扇形面积弧长公式l=180Rn扇形面积公式:在半径为R的圆中,360°的圆心角所对的扇形面积就是圆的面积S=πR2,所以圆心角为n°的扇形的面积为S扇形=3602Rn。比较扇形的弧长公式和面积公式发现:S扇形=lRlRRRnRns21,21211803602扇形所以圆锥的侧面积和全面积圆锥的侧面积是曲面,沿着圆锥的一条母线将圆锥的侧面展开,容易得到圆锥的侧面展开图是一个扇形。设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2πr,因此圆锥的侧面积rllrs221圆锥侧。圆锥的全面积为2rrlsss底圆锥侧圆锥全。25.1.1随机事件必然事件、不可能事件、随机事件:在一定条件下,有些事件必然会发生,这样的事件称为必然事件;相反地,有些事件必然不会发生,这样的事件称为不可能事件;在一定条件下,可能发生也可能不会发生的事件称为随机事件。注:必然事件和不可能事件是否会发生,是可以事先确定的,所以它们统称为确定性事件。事件发生的可能性的大小必然事件的可能性最大,不可能事件的可能性最小,随机事件发生的可能性有大有小。不同的随机事件发生的可能性的大小有可能不同。25.1.2概率一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功