3421EDCBAADBCoABEDCF(第3题)(第5题)(第6题)(第4题)三角形全等的条件(1)一、选择题1.已知△ABC的六个元素,则下面甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲和乙B.乙和丙C.只有乙D.只有丙二、填空题2.如图,已知∠A=∠D,∠ABC=∠DCB,AB=6,则DC=.3.如图,已知∠A=∠C,BE∥DF,若要用“AAS”证△ABE≌△CDF,则还需添加的一个条件是.(只要填一个即可)三、解答题4.已知:如图,AB=CD,AC=BD,写出图中所有全等三角形,并注明理由.5.如图,如果AC=EF,那么根据所给的数据信息,图中的两个三角形全等吗?请说明理由.6.如图,已知∠1=∠2,∠3=∠4,EC=AD,求证:AB=BEDCBA(第2题)ABDFCE(第3题)(第4题)三角形全等的条件(2)一、选择题1.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D。一直角边和斜边对应相等二、填空题2.如图,BE和CF是△ABC的高,它们相交于点O,且BE=CD,则图中有对全等三角形,其中能根据“HL”来判定三角形全等的有对.3.如图,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则∠ABC+∠DFE=___________度.三、解答题4.已知:如图,AC=DF,BF=CE,AB⊥BF,DE⊥BE,垂足分别为B,E.求证:AB=DE5.如图,△ABC中,D是BC边的中点,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F.求证:(1)DE=DF;(2)∠B=∠C.6.如图,AD为△ABC的高,E为AC上一点,BE交AD于点F,且有BF=AC,FD=CD.求证:BE⊥AC.FEDCBAABCED(第2题)O(第5题)ABCDEFABCDEF(第6题)ACBEDDECBAABCDEF12(第2题)(第4题)(第6题)(第5题)三角形全等的条件(3)一、选择题1.下列条件中,不一定能使两个三角形全等的是()A.三边对应相等B.两角和其中一角的对边对应相等C.两边和其中一边的对角对应相等D.两边和它们的夹角对应相等2.如图,E点在AB上,AC=AD,BC=BD,则全等三角形的对数有()A.1B.2C.3D.43.有下列命题:①两边及第三边上的高对应相等的两个三角形全等;②两边及其中一边上的中线对应相等的两个三角形全等;③两边及第三边上的高对应相等的两个锐角三角形全等;④有锐角为30°的两直角三角形,有一边对应相等,则这两个三角形全等.其中正确的是()A.①②③B.①②④C.①③④D.②③④二、解答题4.已知AC=BD,AF=BE,AE⊥AD,FD⊥AD.求证:CE=DF5.已知:△ABC中,AD是BC边上的中线,延长AD到E,使DE=AD.猜想AB与CE的大小及位置关系,并证明你的结论.6.如图,在△ABC中,AB=AC,D、E、F分别在AB、BC、AC上,且BD=CE,∠DEF=∠B,图中是否存在和△BDE全等的三角形?并证明.CAEBFD