生物统计学名词解释大全

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

1.样本:样本从总体中抽出的若干个体所构成的集合称为样本。2.总体:总体指具有相同性质的个体所组成的集合称为总体。3.连续变量:表示在不变量范围内可抽出某一范围的所有值。4.非连续变量:也称为离散型变量,表示在变量数列中,仅能取得固定数值,并且通常是整数。5.准确性:指在调查或实验中某一试验指标或形状的观测值与真值接近的程度。6.精确性:指调查或实验中同一试验指标或形状的重复观测值彼此接近程度大小。7.资料:指在一定条件下,在生物学实验和调查中,能够获得大量原始数据,对某种具体事务或现象观察的结果。8.数量性状资料:指一般是由计数和测量或度量得到的。9.质量性状资料:是指对某种现象只能观察而不能测量的资料,也称属性资料。10.计数资料;指由计数得到的数据。11.计量资料:有测量或度量得到的数据。12.普查:指对研究对象的每一个个体都进行测量或度量的一种全面调查。13.抽样调查:是一种非全面调查,它是根据一定的原则对研究对象抽取一部分个体进行测量或度量,把得到抽样调查的数据资料作为样本进行统计处理,然后利用样本特征数对总体进行推断。14.全距(极差):是指样本数据资料中最大观测值与最小观测值的差值。组中值:是指两个组限下线和上限的中间值。15.算数平均数:是指总体或样本资料中哥哥给观测值的总和除以观测值的个数所得的商。16.中位数:是指将试验或调查资料中所有观测值以大小顺序排列,居中位置的观测值。17.众数:资料中出现次数最多的那个观测值或次数最多一组的中点值。18.几何平均数:指资料中有几个观测值,其乘积开几次方所得的数值。19.方差:指用样本容量n来除离均差平方和,得到平均的平方和。20.标准差:指方差的平方根和。21.变异系数:指将样本标准差除以样本平均数得出的百分比。22.概率:指某事件A在n次重复试验中,发生了几次,当试验次数n不断增大时,事件A发生的频率W(A)概率就越来越接近某一确定值P,于是则定P为事件A发生的概率.23.和事件:指事件A和事件B至少有一件发生而构成的新事件称为事件A和事件B的事件。24.积事件:指事件A和事件B同时发生而构成的新事件,称为事件A和事件B的积事件。25.互斥事件:指事件A和事件B不能同时发生,称为事件A和事件B互斥。26.对立事件:指事件A和事件B必有一个事件发生,但两者不能同时发生。27.独立事件:指事件A的发生与事件B的发生毫无关系。28.完全事件系:指如果多个事件A1、A2、、、、、、An两两相斥,且每次试验结果必然发生其一,则称事件A1、完全事件系A2、、、、、、An为一个完全事件系。29.概率加法定理:指互斥事件A和B的和事件的概率等于事件A和事件B的概率之和,P(A+B)=P(A)+P(B)。30.概率乘法定理:指事件A和事件B为独立事件,则事件A与B同时发生的概率等于事件A和事件B各自概率乘法定理的乘积,即:P(A*B)=P(A)*P(B)。31.伯努利大数定律:设M是n次独立试验中事件A出现的次数,而不是事件A在每次试验中出现的概率,则对于任意小的正数ε,有如下关系:limp{m/n-pε}=132.辛钦大数定律:是用来说明为什么可以用算术平均数来推断总体平均数m的。33.统计推断:指从样本的统计数对总体参数做出的推断,包括参数估计和假设检验。34.假设检验:指根据总体理论分布和小概率原理,对未知或不完全知道的总体提出两种彼此对立的假设,然后有样本的实际结果,经过一定的计算,做出在一定概率意义上应该接受的那种假设的推断。35.参数估计:指由样本结果对总体参数在一定概率水平下所作出的估计。点估计是用样本统计量直接给出总体相应参数的估计值,由于抽样误差存在,X拔不同的样本将会得到不同的点估计值,点估计缺乏明确的精度概念,而区间估计在一定程度上可以弥补这个不足36.小概率原理:指如果假设一些条件,并在假设的条件下能够准确地算出事件A出现的概率a为很小,则在假设条件下的n次独立重复试验中时按预定的概率发生,而在有一次试验中则几乎不可能独立。37.显著水平:指在无效假设和备择假设后,要确定一个否定H0的概率标准,这个概率称为显著水平。38.方差同质性:就是指各个总体的方差是相同的。39.α错误:H0是真实的,假设检验却否定了它,就烦了一个否定真实假设的错误,称为α错误。40.β错误:指如果H0不是真实的,假设检验时却接受了H0,否定了HA这样就犯了接受不真实假设的错误,称为β错误。41.适合性检验:指比较观测值与理论值是否符合的假设检验交适合性检验。42.独立性检验:指研究两个或两个以上因子彼此之间是相互独立的还是相互影响的一类统计方法。43.相关分析:是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量间的相关关系的一种统计方法。44.回归分析:是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。45.回归系数:y^=a+bx,自变量x改变一个单位,依变量y平均增加或减少的单位数,即回归直线的斜率b。46.回归截距:y^=a+bx,a是当x=0时的Y^值,即直线在y轴上的截距,称为回归截距。47.离回归平方和:它反映除去x与y相关程度和性质的统计数。48.回归平方和:它反映在y的总体变异种由于x与y的直线关系而产生y变异减小的部分。49.相关系数:是指通过计算表示x和y相关程度和性质的统计数。50.决定系数:是变量x引起y变异的回归平方和与y变异总平方和的比率。51.转换:指估计总体相关系数p的置信区间时,需要将r转换成z。52.试验设计:广义的指整个研究课题的设计,包括实验方案的拟订,试验方案的拟订,试验单位的选择,分组的排列,实验过程中试验指标的现象记载,试验资料的整理,分析等内容。53.试验结果重演:是指在相同的条件下,在进行实验或实践,应能重复获得与原试验结果相近的结果。54.处理因素:一般指对受试对象给予的某种外部干预。55.主效应:多因素中试验中引起实验结果发生变化的主要。56.互作:因素之间的交互作用。57.受试对象:是处理因素的客体,实际上就是根据研究目的而确立的观测总体。58.处理效应:是处理因素作用于受试对象的反应,是研究最终体现59.误差:在试验中受偶然影响或者说非处理因素影响使观测值偏离试验处理真值的差异。60.随机误差:由于试验中许多无法控制的偶然因素所造成的试验结果与真实结果之间产生的误差。61.系统误差:由于试验处理以外的其他条件明显不一致所产生的带有倾向性或定向性的偏差62.重复:在试验中,同一处理设置的试验单位数。63.随机:是指一个重复的某一处理或处理组合被安排在哪一个试验单位,不要有主观成见。64.均积:是x与y的平均的离均差的乘积和,简称均积。65.协方差:与均积相应的总体参数。66.协方差分析:把回归分析与方差分析结合。67.试验控制:要提高试验的精确度和灵敏度,必须严格控制试验条件的均匀性,使各处里处于尽可能一致的条件下。68.统计控制:是试验控制的一种辅助手段,是用统计方法来矫正因自变量的不同而对依变量所产生的影响。69.估计量:估计总体参数的统计量70.无偏估计量:如果一个统计量的理论平均数(即数学期望)等于总体参数,这个统计量就叫无偏估计量71.矩估计:用样本矩作为总体矩的估计值72.矩估计法(数字特征法、矩法)用样本矩作为相应总体矩的估计量,也可以用样本数字特征作为相应的总体数字特征的估计量。用矩法获得的估计值,叫据估计值。据发的思想实质是用样本去替换总体矩的原则,称之为替换原则73.有效估计量:设a1,a2是A的两个无偏估计量,若var(a1)var(a2),则a1为有效估计量74.抽样误差:由抽样引起的样本值与总体值之间的差异成为抽样误差,直接原因:总体中各个体之间存在差异,或重复试验中一些服从某种分布的偶然误差的存在75.标注误差(标准误):描述样本平均数波动情况的统计量,就是X拔的方差或标准差,计均数抽样误差为西格玛X拔,=西格玛/根号n,西格玛X拔就是标准误(差)76.估计样本平均数方差:SX拔平方,=S平方/n77.估计标准误:SX拔,=S/根号n78.置信区间:达到某一置信度(如95%)时,预报量可能出现的范围(如E(y)±1.96西格玛,这里西格玛是标准差)置信区间的意义是:反复抽样多次,每次的样本容量相等,每次的样本值确定一个区间[a1,a2],这个区间包含a的概率是100(1-阿尔法)%,不包含a的概率是100阿尔法%79.置信水平(置信度,置信系数,可靠度)是指总体参数值落在样本统计值某一区内的概率;而置信区间是指在某一置信水平下,样本统计值与总体参数值间误差范围。置信区间越大,置信水平越高。80.拟合优度检验:对总体分布类型的检验,包括检验观测数与理论书之间的一致性,通过检验观测数与理论书之间的一致性来判断事件之间的独立性81.皮尔逊定理:若n充分大,则不论总体服从什么分布,卡平方总是近似服从自由度为m-a-1的卡平方分布82.方差分析:能同时判断多组数据平均数之间的差异显著性,能把随机变异从混杂状态中分离开来,从而为判断因素对实验结果有无确实的影响提供依据83.方差分析的前提条件:等方差,正态性、独立性84.固定因素:若因素的a个水平是经过特意选择的,则该因素为固定因素。发差分析所得到的结论只适合于选定的几个水平,并不能将其结论扩展到未加考虑的水平上85.固定效应模型:处理固定因素所用的模型称为固定效应模型或固定模型86.随机因素:若因素的a个水平,是从该因素水平总体中随机抽出的样本,则该因素称为随机因素,从随机因素a个水平所得到的结论,可以推广到这个因素的所有水平上87.处理随机因素所用的模型称为随机效应模型88.多重比较:对各对均值之间的差异的显著性检验89.LSD法在统计推断时犯第一类错误的概率大,而Duncan法犯第一类错误的概率小。90.多个方差齐性检验(bartlett检验,巴特氏卡平方检验):当a个随机样本是从独立正态总体中抽取时,可以计算出统计量K平方,当n=min(nj)充分大时,K平方的抽样分布非常接近于a-1自由度的卡方分布。由此可对多个总体进行卡平方检验。91.两因素之间交互作用产生新效应的现象为交互作用92.由因素水平的改变而造成的因素效应的改变称为该因素的主效应93.交叉分组设计:假设A药物有a水平,B药物有b水平,共有ab个剂量组合,每一组重复n次。共有abn名病人参加实验,这样的实验设计称为交叉分组设计94.相关:设有两个随机变量X和Y,对于任一随机变量的每一个可能的值,另一个随机变量都有一个确定的分布与之相对应,则称这两个随机变量之间存在相关关系95.如果变量之间的关系可以用函数关系来表达,就称它们之间的关系为确定性关系96.回归关系、相关关系:统计学上把变量之间的非确定性关系称为相关关系,也成为回归关系97.如果对于一个普通变量x的每一个可能的值xj都有随机变量Y的一个分布与之对应,则称随见变量Y的一个分布与之对应,则称随机变量Y对x存在回归关系98.具有回归关系的两变量之间对于任一xi都不会有一个确切的yi与之对应,但为了描述两变量之间的数量关系,可选当x=xi时Y的平均数谬角标Y乘X=xi与之相对应,则称谬角标Y乘X是Y的条件平均数99.Y1,y2…yn这n个数据的离差平方和,记作SYY,称为总离差平方和,反映了n个yi折的离散程度100.回归平方和(y折-y拔)平方求和,几座SSR。是n个yi折的离差平方和,反映了n个yi折的离散程度101.剩余平方和(残差平方和)(yi-yi拔)平方求和,记作SSe,是除了x对Y的线性影响之外的其他剩余因素造成的平方和,这些因素中包括x对Y的非线性影响及试验误差,观察误差等随机因素102.相关分析是对两个或两个以上随见变量之间相互关联程度进行分析的统计学方法103.存在于两个随机变量之间的相关关系称为简单相关或单相关,存在于三个或三个以上变量之间的相关关系为多重相关或复相关在一元回归中,回归的显著程度,可以用相关系数来表示,同样,在多元回

1 / 4
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功