试卷第1页,总18页初四数学二次函数中的最大面积专题练习题1.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC.抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式.(2)若点P是第二象限内抛物线上的动点,其横坐标为t.①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时点P的坐标.②是否存在一点P,使△PCD的面积最大?若存在,求出△PCD面积的最大值;若不存在,请说明理由.2.如图,已知抛物线cxaxy232与x轴相交于A,B两点,并与直线221xy交于B,C两点,其中点C是直线221xy与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角形;(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC各边上)若能,求出最大面积;若不能,请说明理由.3.某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:第24题备用图xyCODAB试卷第2页,总18页(1)设AB=x米(x>0),试用含x的代数式表示BC的长;(2)请你判断谁的说法正确,为什么?4.如图,已知抛物线cbxaxy2过点A(6,0),B(-2,0),C(0,-3).(1)求此抛物线的解析式;(2)若点H是该抛物线第四象限的任意一点,求四边形OCHA的最大面积;(3)若点Q在y轴上,点G为该抛物线的顶点,且∠QGA=45º,求点Q的坐标.5.如图,抛物线y=-x2-2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)设点H是第二象限内抛物线上的一点,且△HAB的面积是6,求点H的坐标;(3)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积.6.如图,△ABC中,∠C=90°,BC=7cm,AC=5,点P从B点出发,沿BC方向以2m/s的速度移动,点Q从C出发,沿CA方向以1m/s的速度移动.试卷第3页,总18页(1)若P、Q同时分别从B、C出发,那么几秒后,△PCQ的面积等于4?(2)若P、Q同时分别从B、C出发,那么几秒后,PQ的长度等于5?(3)△PCQ的面积何时最大,最大面积是多少?7.如图,有长为24米的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a10米):如果AB的长为x,面积为y.(1)求面积y与x的函数关系(写出x的取值范围);(2)x取何值时,面积最大?面积最大是多少?8.若用40m的篱笆围成一个一边靠墙的矩形场地,墙长am,垂直于墙的边长为xm,围成的矩形场地的面积为ym2.(1)求y与x的函数关系式.(2)矩形场地的面积能否达到210m2?请说明理由.(3)当a=15m或30m时,请分别求出这个矩形场地面积的最大值.9.如图,用长为l2m的篱笆,一边利用足够长的墙围出一块苗圃.如图,围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,∠C=∠D=∠E.设CD=DE=xm,五边形ABCDE的面积为Sm2.问当x取什么值时,S最大?并求出S的最大值.10.已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.11.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC试卷第4页,总18页下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)当点P运动到什么位置时,△BPC的面积最大?求出此时P点的坐标和△BPC的最大面积;(3)连接PO、PC,并把△POC沿CO翻折,得到四边形POP1C,那么是否存在点P,使四边形POP1C为菱形?若存在,直接写出此时点P的坐标;若不存在,请说明理由.12.课本中有一道作业题:有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm?小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.13.某家禽养殖场,用总长为110m的围栏靠墙(墙长为22m)围成如图所示的三块矩形区域,矩形AEHG与矩形CDEF面积都等于矩形BFHG面积的一半,设AD长为xm,矩形区域ABCD的面积为ym2.试卷第5页,总18页(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,y有最大值?最大值是多少?14.有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.现要把它加工成矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB,AC上.(1)如果此矩形可分割成两个并排放置的正方形,如图1,此时,这个矩形零件的两条邻边长分别为多少mm?请你计算.(2)如果题中所要加工的零件只是矩形,如图2,这样,此矩形零件的两条邻边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条邻边长.15.如图,已知二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.16.如图,已知抛物线y=﹣x2+bx+c与坐标轴分别交于点点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.试卷第6页,总18页(1)求该抛物线的解析式及点E的坐标;(2)若D点运动的时间为t,△CED的面积为S,求S关于t的函数关系式,并求出△CED的面积的最大值.17.如图,在平面直角坐标系xoy中,直线122yx与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是32x,且经过A、C两点,与x轴的另一交点为点B.(1)①直接写出点B的坐标;②求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.18.(2015•鄂州)如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣且经过A、C两点,与x轴的另一交点为点B.(1)①直接写出点B的坐标;②求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.19.(2014秋•昆明校级期末)如图,四边形DEFG是△ABC的内接矩形,如果△ABC的试卷第7页,总18页高线AH长8cm,底边BC长10cm,设DG=xcm,DE=ycm,(1)求y关于x的函数关系式;(2)当x为何值时,四边形DEFG的面积最大?最大面积是多少?20.(2015秋•保定期末)如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.点P从A出发,沿AB方向,以2cm/s的速度向点B运动,点Q从C出发,沿CA方向,以1cm/s的速度向点A运动;若两点同时出发,当其中一点到达端点时,两点同时停止运动,设运动时间为t(s),△APQ的面积为S(cm2)(1)t=2时,则点P到AC的距离是cm,S=cm2;(2)t为何值时,PQ⊥AB;(3)t为何值时,△APQ是以AQ为底边的等腰三角形;(4)求S与t之间的函数关系式,并求出S的最大值.21.(2012•眉山)已知:如图,直线y=3x+3与x轴交于C点,与y轴交于A点,B点在x轴上,△OAB是等腰直角三角形.(1)求过A、B、C三点的抛物线的解析式;(2)若直线CD∥AB交抛物线于D点,求D点的坐标;(3)若P点是抛物线上的动点,且在第一象限,那么△PAB是否有最大面积?若有,求出此时P点的坐标和△PAB的最大面积;若没有,请说明理由.22.(2015秋•随州期末)如图,已知抛物线y=ax2+bx+c经过A(1,0)、B(0,3)及C(3,0)点,动点D从原点O开始沿OB方向以每秒1个单位长度移动,动点E从点C开始沿CO方向以每秒1个长度单位移动,动点D、E同时出发,当动点E到达原点O时,点D、E停止运动.试卷第8页,总18页(1)求抛物线的解析式及顶点P的坐标;(2)若F(﹣1,0),求△DEF的面积S与E点运动时间t的函数解析式;当t为何值时,△DEF的面积最大?最大面积是多少?(3)当△DEF的面积最大时,抛物线的对称轴上是否存在一点N,使△EBN是直角三角形?若存在,求出N点的坐标,若不存在,请说明理由.23.(2014秋•香洲区期末)已知二次函数中x和y的部分对应值如下表:x…﹣10123…y…0﹣3﹣4﹣30…(1)求二次函数的解析式;(2)如图,点P是直线BC下方抛物线上一动点,当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积;(3)在抛物线上,是否存在一点Q,使△QBC中QC=QB?若存在请直接写出Q点的坐标.24.如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=﹣且经过A、C两点,与x轴的另一交点为点B.(1)①直接写出点B的坐标;②求抛物线解析式.(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC.求△PAC的面积的最大值,并求出此时点P的坐标.(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.25.(2015秋•綦江区期末)如图,在平面直角坐标系中,直线y=x+3分别交x轴、y轴于A,C两点,抛物线y=ax2+bx+c(a≠0),经过A,C两点,与x轴交于点B(1,0).试卷第9页,总18页(1)求抛物线的解析式;(2)点D为直线AC上一点,点E为抛物线上一点,且D,E两点的横坐标都为2,点F为x轴上的点,若四边形ADEF是平行四边形,请直接写出点F的坐标;(3)若点P是线段AC上的一个动点,过点P作x轴的垂线,交抛物线于点Q,连接AQ,CQ,求△ACQ的面积的最大值.26.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去三个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.3cm2B.3