二次函数专题

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

二次函数专题(3)第1页共9页二次函数专题(3)1.如图为抛物线2yaxbxc的图像,A、B、C为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是()A.a+b=-1B.a-b=-1C.b2aD.ac02.定义符号xy表示与自变量x所对应的函数值。例如对于函数4x2-xy2,当2x时,对应的函数值4y,则可以写为:4y2.在二次函数cbxaxy2(a>0)中,若1t-1tyy对任意实数t都成立,那么下列结论错误的是()3.如图,四个二次函数的图像中,分别对应的是①y=ax2;②y=bx2;③y=cx2;④y=dx2.则a、b、c、d的大小关系为()(第3题)(第4题)A.abcdB.abdcC.bacdD.badc4.二次函数cbxaxy2的图象如图所示,则abc,acb42,ba2,cba这四个式子中,值为正数的有()A.4个B.3个C.2个D.1个5.根据下列表格中的对应值得到二次函数cbxaxy2(a≠0)与x轴有一个交点的横坐标x的范围是()x3.233.243.253.26y﹣0.06﹣0.020.030.09A.x<3.23B.3.23<x<3.24C.3.24<x<3.25D.3.25<x<3.26二次函数专题(3)第2页共9页6.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c>0.其中正确的命题是:.(只要求填写正确命题的序号)(第6题)(第7题)7.如图,在平面直角坐标系中,点A是抛物线2y=ax3+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为.8.如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=32,直线y=323x经过点C,交y轴于点G,且∠AGO=30°。(1)点C、D的坐标(2)求顶点在直线y=323x上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线32-x3y平移,平移后的抛物线交y轴于点F,顶点为E,平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由。9.如图,抛物线y=x2+bx+c与y轴交于点C,与x轴相交于A,B两点,点A的坐标为(2,0),点C的坐标为(0,―4).12二次函数专题(3)第3页共9页(1)求抛物线的解析式;(2)点Q是线段OB上的动点,过点Q作QE//BC,交AC于点E,连接CQ,设OQ=m,当△CQE的面积最大时,求m的值,并写出点Q的坐标.(3)若平行于x轴的动直线,与该抛物线交于点P,与直线BC交于点F,D的坐标为(-2,0),则是否存在这样的直线l,使OD=DF?若存在,求出点P的坐标;若不存在,请说明理由.10.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点。(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形,若能,求出BE的长;若不能,请说明理由;当线段AM最短时,求重叠部分的面积。11.如图1,抛物线y=nx2-11nx+24n(n<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空:点B的坐标为(_),点C的坐标为(_);(2)连接OA,若△OAC为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.二次函数专题(3)第4页共9页12.如图,在平面直角坐标系中,已知点A坐标为(2,4),直线错误!未找到引用源。与轴相交于点B,连结OA,抛物线错误!未找到引用源。从点O沿OA方向平移,与直线错误!未找到引用源。交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)设抛物线顶点M的横坐标为错误!未找到引用源。,①用错误!未找到引用源。的代数式表示点P的坐标;②当错误!未找到引用源。为何值时,线段PB最短;(3)当线段PB最短时,相应的抛物线上是否存在异于M的点Q,使△PQA的面积与△PMA的面积相等,若存在,请求出点Q的坐标;若不存在,请说明理由.13.如图,已知二次函数的图象经过点A(3,3)、B(4,0)和原点O.P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA交于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,用含m的代数式表示线段PC的长,并求线段PC的最大值;(3)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,如果存在,请直接写出所有P的坐标;如果不存在,请说明理由.x二次函数专题(3)第5页共9页14.如图1,抛物线211344yxx与x轴交于A、C两点,与y轴交于B点,与直线y=kx+b交于A、D两点.(1)求A、C两点坐标和直线AD的解析式;(2)如图2,质地均匀的正四面体骰子的各个面上依次标有数字-1、1、3、4.随机抛掷这枚骰子两次,把第一次着地一面的数字m记做P点的横坐标,第二次着地一面的数字n记做P点的纵坐标.则点P(m,n)落在图1中抛物线与直线围成区域内(图中阴影部分,含边界)的概率是多少?15.已知抛物线y=ax2+bx+c(a>0)的图象经过点B(14,0)和C(0,-8),对称轴为x=4.(1)求该抛物线的解析式;(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若不存在,请说明理由;(3)在(2)的结论下,直线x=1上是否存在点M使△MPQ为等腰三角形?若存在,请求出所有点M的坐标,若不存在,请说明理由.二次函数专题(3)第6页共9页16.如图,抛物线y=21x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).⑴求抛物线的解析式及顶点D的坐标;⑵判断△ABC的形状,证明你的结论;⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.17.已知,如图,在平面直角坐标系中,点A坐标为(-2,0),点B坐标为(0,2),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段OB于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=2x2+mx+n的图象经过A,C两点.(1)求此抛物线的函数表达式;(2)求证:∠BEF=∠AOE;(3)当△EOF为等腰三角形时,求此时点E的坐标;(4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF的面积是△EDG面积的(122)倍.若存在,请直接..写出点P的坐标;若不存在,请说明理由.二次函数专题(3)第7页共9页18.在平面直角坐标系中,二次函数2yaxbx2的图象与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;考生注意:下面的(3)、(4)、(5)题为三选一的选做题,即只能选做其中一个题目,多答时只按作答的首题评分,切记啊!(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;(4)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;(5)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.19.已知抛物线2yax2axc与y轴交于C点,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且OCA3O.(1)求抛物线的函数表达式;(2)直接写出直线BC的函数表达式;(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2).求:①s与t之间的函数关系式;②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.二次函数专题(3)第8页共9页(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.20.如图,A、B两点的坐标分别是(8,0)、(0,6),点P由点B出发沿BA方向向点A作匀速直线运动,速度为每秒3个单位长度,点Q由A出发沿AO(O为坐标原点)方向向点O作匀速直线运动,速度为每秒2个单位长度,连接PQ,若设运动时间为t(0<t<103)秒.解答如下问题:(1)当t为何值时,PQ∥BO?(2)设△AQP的面积为S,①求S与t之间的函数关系式,并求出S的最大值;②若我们规定:点P、Q的坐标分别为(x1,y1),(x2,y2),则新坐标(x2﹣x1,y2﹣y1)称为“向量PQ”的坐标.当S取最大值时,求“向量PQ”的坐标.二次函数专题(3)第9页共9页21.如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.22.如图1,在Rt△AOB中,∠AOB=90°,AO=38,∠ABO=30°.动点P在线段AB上从点A向终点B以每秒32个单位的速度运动,设运动时间为t秒.在直线OB上取两点M、N作等边△PMN.(1)求当等边△PMN的顶点M运动到与点O重合时t的值.(2)求等边△PMN的边长(用t的代数式表示);(3)如果取OB的中点D,以OD为边在Rt△AOB内部作如图2所示的矩形ODCE,点C在线段AB上.设等边△PMN和矩形ODCE重叠部分的面积为S,请求出当0≤t≤2秒时S与t的函数关系式,并求出S的最大值.(4)在(3)中,设PN与EC的交点为R,是否存在点R,使△ODR是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.

1 / 9
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功