二次函数常见压轴1、y=322xx(以下几种分类的函数解析式就是这个)和最小,差最大在对称轴上找一点P,使得PB+PC的和最小,求出P点坐标在对称轴上找一点P,使得PB-PC的差最大,求出P点坐标求面积最大连接AC,在第四象限找一点P,使得ACP面积最大,求出P坐标讨论直角三角连接AC,在对称轴上找一点P,使得ACP为直角三角形,求出P坐标或者在抛物线上求点P,使△ACP是以AC为直角边的直角三角形.讨论等腰三角连接AC,在对称轴上找一点P,使得ACP为等腰三角形,求出P坐标讨论平行四边形1、点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标2、这里小改动,把C(0,-3)改成C(2,-3)连接BC,在x轴上找一个点F,抛物线上找一点P,使得以B、C、F、G为顶点的四边形构成平行四边形OxyABCDOxyABCDOxyABC(2,-3)DOxyABCDOxyABCD和最小差最大3、如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D2(4,)3.(1)求抛物线的解析式.(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2)①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S取54时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.4、如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.(第22题)面积最大5、如图,在平面直角坐标系中,点A、C的坐标分别为(-1,0)、(0,3-),点B在x轴上.已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象上的一个动点(点P与B、C不重合),过点P作y轴的平行线交BC于点F.(1)求该二次函数的解析式;(2)若设点P的横坐标为m,试用含m的代数式表示线段PF的长;(3)求△PBC面积的最大值,并求此时点P的坐标.6、在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.yxBAFPx=1COxyOBCMA7、(2011•广元)如图,抛物线y=ax2+2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A(﹣4,0)和B.(1)求该抛物线的解析式;(2)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CEQ的面积最大时,求点Q的坐标;(3)平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(﹣2,0).问是否有直线l,使△ODF是等腰三角形?若存在,请求出点F的坐标;若不存在,请说明理由.讨论等腰8、如图,已知抛物线y=21x2+bx+c与y轴相交于C,与x轴相交于A、B,点A的坐标为(2,0),点C的坐标为(0,-1).(1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连结DC,当△DCE的面积最大时,求点D的坐标;(3)在直线BC上是否存在一点P,使△ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由.DBCOAyxEBCOA备用图yx9、(湖北省武汉市新洲区)如图,已知抛物线y=x2+bx+3与x轴交于点B(3,0),与y轴交于点A,P是抛物线上的一个动点,点P的横坐标为m(m>3),过点P作y轴的平行线PM,交直线AB于点M.(1)求抛物线的解析式;(2)若以AB为直径的⊙N与直线PM相切,求此时点M的坐标;(3)在点P的运动过程中,△APM能否为等腰三角形?若能,求出点M的坐标;若不能,请说明理由.论直角三角10、如图,已知点A(一1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有().(A)2个(B)4个(C)6个(D)7个11、已知:如图一次函数y=21x+1的图象与x轴交于点A,与y轴交于点B;二次函数y=21x2+bx+c的图象与一次函数y=21x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0)(1)求二次函数的解析式;(2)求四边形BDEC的面积S;(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.OAByCxDE2OABxyPM12、(甘肃省天水市、庆阳市、定西市、白银市、嘉峪关市等九市联考)如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标;(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由.讨论四边形13、二次函数y=x2+px+q(p<0)的图象与x轴交于A、B两点,与y轴交于点C(0,-1),△ABC的面积为45.(1)求该二次函数的关系式;(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围;(3)在该二次函数的图象上是否存在点D,使四边形ACBD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由.OACxyBOABxyCD14、已知:抛物线y=x2-2x+a(a<0)与y轴相交于点A,顶点为M.直线y=21x-a分别与x轴,y轴相交于B,C两点,并且与直线AM相交于点N.(1)填空:试用含a的代数式分别表示点M与N的坐标,则M(,),N(,);(2)如图,将△NAC沿y轴翻折,若点N的对应点N′恰好落在抛物线上,AN′与x轴交于点D,连结CD,求a的值和四边形ADCN的面积;(3)在抛物线y=x2-2x+a(a<0)上是否存在一点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出P点的坐标;若不存在,试说明理由.15、(辽宁省抚顺市)已知:如图所示,关于x的抛物线y=ax2+x+c(a≠0)与x轴交于点A(-2,0),点B(6,0),与y轴交于点C.(1)求出此抛物线的解析式,并写出顶点坐标;(2)在抛物线上有一点D,使四边形ABDC为等腰梯形,写出点D的坐标,并求出直线AD的解析式;(3)在(2)中的直线AD交抛物线的对称轴于点M,抛物线上有一动点P,x轴上有一动点Q.是否存在以A、M、P、Q为顶点的平行四边形?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.N′CNxOAMByDCNxOAMBy备用图BAyOCx综合型题目16、(山东省烟台市)如图,抛物线y=ax2+bx-3与x轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M.(1)求抛物线对应的函数表达式;(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点P,A,C,N为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)设直线y=-x+3与y轴的交点是D,在线段BD上任取一点E(不与B,D重合),经过A,B,E三点的圆交直线BC于点F,试判断△AEF的形状,并说明理由;(4)当E是直线y=-x+3上任意一点时,(3)中的结论是否成立?(请直接写出结论)17、(湖北省黄冈市)如图,在平面直角坐标系xoy中,抛物线y=181x2-94x-10与x轴的交点为A,与y轴的交点为点B,过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动.线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)(1)求A,B,C三点的坐标和抛物线的顶点坐标;(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;(3)当0<t<29时,△PQF的面积是否总为定值?若是,求出此定值;若不是,请说明理由;(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.OBxAMC1y-3OABxyDQCFPE