二次函数应用题(专题复习)

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

思广教育“个性化辅导”备课教案授课时间:2012年月日时分至时分备课时间:2012年月日星期:年级:初三课时:课题:应用题学员姓名:教师姓名:陈老师教学目标1、理解并掌握二次函数的基本性质;2、学会函数解应用题的一般方法,会找变量之间的关系;3、会求二次函数的最大值,能运用二次函数求最大利润问题。重点难点二次函数应用题的解题方法教学内容最大利润问题最大利润问题这类问题只需围绕一点来求解,那就是总利润=单件商品利润*销售数量设未知数时,总利润必然是因变量y,而自变量可能有两种情况:1)自变量x是所涨价多少,或降价多少2)自变量x是最终的销售价格而这种题型之所以是二次函数,就是因为总利润=单件商品利润*销售数量这个等式中的单件利润里必然有个自变量x,销售数量里也必然有个自变量x,至于为什么它们各自都有一个x,后面会给出解释,那么两个含有x的式子一相乘,再打开后就是必然是一个二次的多项式,所以如果在列表达式时发现单利润里没有x,或销售数量里没有x,那恭喜你,此题0分!下面借助例题加以理解:商场促销,将每件进价为80元的服装按原价100元出售,一天可售出140件,后经市场调查发现,该服装的单价每降低1元,其销量可增加10件现设一天的销售利润为y元,降价x元。(1)求按原价出售一天可得多少利润?解析:总利润=单利润*数量所以按原价出售的话,则y=140*(100-80)=2800元答案:(1)y=140*(100-80)=2800(元)(2)求销售利润y与降价x的的关系式解析:总利润=数量*单利润这么想:因为降价,所以单利润会有变动,又因为进价不可能变,那降多少元,利润减少多少元,降价x元,利润就减少x元,所以单利润就减少x元,即单利润变为:(100-80-x)又想:因为降价卖的就多,那么数量怎么变?原来一天140件,降1元多卖10件,降x元就应该多卖10x件,所以数量就变为:(140+10x)(3)商场要使每天利润为2850元并且使得玩家得到实惠,应该降价多少元?(4)要使利润最大,则需降价多少元?并求出最大利润解析:因为要是利润最大,所以需要求因变量y的最大值,重点难点:(5)现题目条件不变,若将降价后的销售价格设为自变量x,求因变量y与自变量x的关系式解析:原来的自变量是什么?是降低的价格,而现在是降后的售价自变量一变化,那么关系式就全变了,所以之前的一切关系都要作废但总利润=单利润*数量,这个关系是永远不变的!所以要找到y与x的关系,还是从此处出发这么想:单利润=售价-进价,进价是不变的,而售价现在变为x了,则单利润就是(x-80),而这时数量就变复杂了,这么想:数量变化依然是因为降价而造成的,始终有降价1元多卖10件这一关系,所以如果知道了降多少元,就必然知道多卖多少件,那么降了多少呢?最初的售价是100元,降价后的售价是x元,那么之间的差值就是所降的价格,即降价为(100-x),我们知道降1元多卖10件,现在降了(100-x),那么就应该多卖10*(100-x)件,注意这只是多买的,总共买的应该是原来卖的加上多卖的,即140+10*(100-x),所以数量就是[140+10*(100-x)]单利润知道了是(x-80),销售数量也知道了是[140+10*(100-x)]则总利润y=(x-80)*[140+10*(100-x)](一)涨价或降价为未知数例1、某旅社有客房120间,每间房间的日租金为50元,每天都客满,旅社装修后要提高租金,经市场调查,如果一间客房的日租金每增加5元,则每天出租的客房会减少6间。不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前的日租金总收入增加多少元?变式:1、某商场销售一批名牌衬衫,平均每天售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天多售出2件。①若商场平均每天要盈利1200元,每件衬衫应降价多少元?②若每件衬衫降价x元时,商场平均每天盈利y元,写出y与x的函数关系式。例2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?变式:2、某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?(二)售价为未知数例3、某食品零售店为仪器厂代销一种面包,未售出的面包可退回厂家,经统计销售情况发现,当这种面包的单价定为7角时,每天卖出160个。在此基础上,这种面包的单价每提高1角时,该零售店每天就会少卖出20个。考虑了所有因素后该零售店每个面包的成本是5角。设这种面包的单价为x(角),零售店每天销售这种面包所获得的利润为y(角)。⑴用含x的代数式分别表示出每个面包的利润与卖出的面包个数;⑵求y与x之间的函数关系式;⑶当面包单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少?变式:2、青年企业家刘敏准备在北川禹里乡投资修建一个有30个房间供旅客住宿的旅游度假村,并将其全部利润用于灾后重建.据测算,若每个房间的定价为60元∕天,房间将会住满;若每个房间的定价每增加5元∕天时,就会有一个房间空闲.度假村对旅客住宿的房间将支出各种费用20元∕天·间(没住宿的不支出).问房价每天定为多少时,度假村的利润最大?例4、某商店购进一批单价为18元的商品,如果以单价20元出售,那么一个星期可售出100件。根据销售经验,提高销售单价会导致销售量减少,即当销售单价每提高1元,销售量相应减少10件,如何提高销售单价,才能在一个星期内获得最大利润?最大利润是多少?变式:3、某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?例5、为了落实国务院副总理李克强同志到恩施考察时的指示精神,最近,州委州政府又出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克.市场调查发现,该产品每天的销售量w(千克)与销售价x(元/千克)有如下关系:w=-2x+80.设这种产品每天的销售利润为y(元).(1)求y与x之间的函数关系式.(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?(3)如果物价部门规定这种产品的销售价不得高于28元/千克,该农户想要每天获得150元的销售利润,销售价应定为多少元?变式:4、某商店经营一批进价为10元的商品,据市场分析,每件售价15元,则一天可售55件,如果售价每降1元,则日销售量可增加3件,(为了方便结账,定价取整数)设销售单价为x元,日销售量为y件,日获利为w元。解答下列问题:(1)试写出y与x之间的函数关系式;(2)试写出w与x之间的函数关系式;(3)计算单价为12元时的日销售量和日销售利润;(4)若使日销售利润达到200元,且老板要尽快减少库存,则售价应定为多少元?(5)定价为多少元时,日获利最多,为多少?(6)分别写出本题中w与x的取值范围。主任审核签字:_____________课后作业学科老师意见及反馈学生感言()非常满意()满意()比较满意()不满意签字:家长签字()非常满意()满意()比较满意()不满意签字:地址:电话:课后练习1.某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式;(3)每件商品的售价定位多少元时,每个月可获得最大利润?最大的月利润是多少元2.某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的销量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)如何定价才能使每星期的利润最大且每星期销量较大?每星期的最大利润是多少?3.某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?4.某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:(1)房间每天的入住量y(间)关于x(元)的函数关系式.(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式.(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?5.旅行社为某旅游团包飞机去旅游,其中旅行社的包机费为15000元,旅游团中的每人的飞机票按以下方式与旅行社结算:若旅游团的人数在30人或30人以下,飞机票每张收费900元;若旅游团的人数多于30人,则给与优惠,每多1人,机票费每张减少10元,但旅游团的人数最多有75人,那么旅游团的人数为多少时,旅行社可获得的利润最大?

1 / 8
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功