二次函数系数与图像的关系1

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

昆明市第二中学授课人:梁艳2010年11月23日初三(1)班二次函数y=ax2+bx+c(a≠0)的系数a,b,c,△与抛物线的关系1、二次函数的定义:形如“y=(a、b、c为常数,a)”的函数叫二次函数。注意:自变量x的最高次项为次,变量的关系是式。≠0ax2+bx+c2整2、抛物线(a≠0)的顶点坐标为________,对称轴为直线_____cbxaxy2)44,2(2abacababx21-3-1如图是二次函数y=ax2+bx+c的函数图象,你能从图中得到哪些信息?(1)a确定抛物线的开口方向:a0a0(2)c确定抛物线与y轴的交点位置:c0c=0c0(3)a、b确定对称轴的位置:ab0ab=0ab0(4)Δ确定抛物线与x轴的交点个数:Δ0Δ=0Δ0x=-b2a二次函数图象位置与a、b、c、的正负关系(2)c确定抛物线与y轴的交点位置:(3)a、b确定对称轴的位置:(4)Δ确定抛物线与x轴的交点个数:xy0a0a0c0c=0c0ab0ab=0ab0Δ0Δ=0Δ0(1)a确定抛物线的开口方向:x=-b2a(1)a确定抛物线的开口方向:(2)c确定抛物线与y轴的交点位置:(3)a、b确定对称轴的位置:(4)Δ确定抛物线与x轴的交点个数:xy0a0a0c0c=0c0ab0ab=0ab0Δ0Δ=0Δ0x=-b2a(1)a确定抛物线的开口方向:(2)c确定抛物线与y轴的交点位置:(3)a、b确定对称轴的位置:(4)Δ确定抛物线与x轴的交点个数:xy0•(0,c)a0a0c0c=0c0ab0ab=0ab0Δ0Δ=0Δ0x=-b2a(1)a确定抛物线的开口方向:(2)c确定抛物线与y轴的交点位置:(3)a、b确定对称轴的位置:(4)Δ确定抛物线与x轴的交点个数:xy0•(0,0)a0a0c0c=0c0ab0ab=0ab0Δ0Δ=0Δ0x=-b2a(1)a确定抛物线的开口方向:(2)c确定抛物线与y轴的交点位置:(3)a、b确定对称轴的位置:(4)Δ确定抛物线与x轴的交点个数:xy0•(0,c)a0a0c0c=0c0ab0ab=0ab0Δ0Δ=0Δ0x=-b2a(1)a确定抛物线的开口方向:(2)c确定抛物线与y轴的交点位置:(3)a、b确定对称轴的位置:(4)Δ确定抛物线与x轴的交点个数:xy0x=-b2aa0a0c0c=0c0ab0ab=0ab0Δ0Δ=0Δ0x=-b2a(1)a确定抛物线的开口方向:(2)c确定抛物线与y轴的交点位置:(3)a、b确定对称轴的位置:(4)Δ确定抛物线与x轴的交点个数:xy0x=-b2aa0a0c0c=0c0ab0ab=0ab0Δ0Δ=0Δ0x=-b2a(1)a确定抛物线的开口方向:(2)c确定抛物线与y轴的交点位置:(3)a、b确定对称轴的位置:(4)Δ确定抛物线与x轴的交点个数:xy0x=-b2aa0a0c0c=0c0ab0ab=0ab0Δ0Δ=0Δ0x=-b2a(1)a确定抛物线的开口方向:(2)c确定抛物线与y轴的交点位置:(3)a、b确定对称轴的位置:(4)Δ确定抛物线与x轴的交点个数:xy0•(x1,0)•(x2,0)a0a0c0c=0c0ab0ab=0ab0Δ0Δ=0Δ0x=-b2a(1)a确定抛物线的开口方向:(2)c确定抛物线与y轴的交点位置:(3)a、b确定对称轴的位置:(4)Δ确定抛物线与x轴的交点个数:xy0•(x,0)a0a0c0c=0c0ab0ab=0ab0Δ0Δ=0Δ0x=-b2a(1)a确定抛物线的开口方向:(2)c确定抛物线与y轴的交点位置:(3)a、b确定对称轴的位置:(4)Δ确定抛物线与x轴的交点个数:xy0•a0a0c0c=0c0ab0ab=0ab0Δ0Δ=0Δ0x=-b2a快速回答:抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的符号:xoy抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的符号:xyo快速回答:抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的符号:xyo快速回答:抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的符号:xyo快速回答:抛物线y=ax2+bx+c如图所示,试确定a、b、c、△的符号:xyo快速回答:中考试题分析(重庆)二次函数y=ax2+bx+c的图像如图所示,则点M(b,c/a)在()A.第一象限B.第二象限C.第三象限D.第四象限Da0,b0,c0(绵阳)二次函数y=ax2+bx+c的图像如图,则不等式bx+a0的解为()A.xa/bB.x-a/bC.xa/bD.x-a/bDa0,b0中考试题分析若抛物线y=ax2+3x+1与x轴有两个交点,则a的取值范围是()A.a>0B.a>-4/9C.a>9/4D.a<9/4且a≠0D抛物线y=ax2+bx+c与x轴交点个数问题与一元二次方程ax2+bx+c=0的根的个数问题紧密联系.(山西省)二次函数y=x2+bx+c的图像如图所示,则函数值y<0时,对应的x取值范围是.-3<x<1-31探究练习:若a0,b0,c0,你能否画出y=ax2+bx+c的大致图象呢?000要画出二次函数的大致图象,不但要知道a,b,c的符号,还应该知道b2-4ac的大小.抛物线y=ax2+bx+c(a≠0)中如果已知:a0,b0,c0,.△0,判断图像经过哪些象限?xyo=抛物线y=ax2+bx+c(a≠0)中如果已知:a0,b0,c0,.△0,判断图像经过哪些象限?xyo已知:二次函数y=ax2+bx+c的系数满足以下的关系:①abc>0;②b2-4ac>0③b=2a④b<0画出该二次函数的大致图像.xoy-11-2二次函数y=ax2+bx+c(a≠0)的几个特例:1、当x=1时,2、当x=-1时,3、当x=2时,4、当x=-2时,y=a+b+cy=a-b+cy=4a+2b+cy=4a-2b+c…………………………xyo1-12练习:二次函数y=ax2+bx+c(a≠0)的图象如上图所示,那么下列判断正确的有(填序号).①、abc0,②、b2-4ac0,③、2a+b0,④、a+b+c0,⑤、a-b+c0,⑥、4a+2b+c0,⑦、4a-2b+c0.③⑦●已知二次函数y=ax2+bx+c的图像如图所示,下列结论:①a+b+c<0,②a-b+c>0;③abc>0;④b=2a中正确个数为()A.4个B.3个C.2个D.1个A当x=1时,y=a+b+c当x=-1时,y=a-b+ca0,b0,c0x=-b/2a=-1二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列判断不正确的是()①、abc0,②、b2-4ac0,③、a-b+c0,④、4a+2b+c0.xyo-12④(安徽)二次函数y=ax2+bx+c的图像如图,则下列a、b、c间的关系判断正确的是()A.ab0B.bc0C.a+b+c0D.a-b+c0a0,b0,c0DC在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图像大致为()B二次函数和一次函数二次函数和一次函数二次函数y=ax2+bx+c(a≠0)与一次函数y=ax+c在同一坐标系内的大致图象是()xyoxyoxyoxyo(C)(D)(B)(A)C(河北)在同一平面直角坐标系中,一次函数y=ax+b和二次函数的图象可能为()bxaxy2A二次函数和一次函数小结:二次函数y=ax2+bx+c(a≠0)的系数a,b,c,△与抛物线的关系abc△a决定开口方向:a>0时开口向上,a<0时开口向下a、b同时决定对称轴位置:a、b同号时对称轴在y轴左侧a、b异号时对称轴在y轴右侧b=0时对称轴是y轴c决定抛物线与y轴的交点:c>0时抛物线交于y轴的正半轴c=0时抛物线过原点c<0时抛物线交于y轴的负半轴△决定抛物线与x轴的交点:△>0时抛物线与x轴有两个交点△=0时抛物线与x轴有一个交点△<0时抛物线于x轴没有交点数形00ABAB对称是一种数学美,它展示出整体的和谐与平衡之美,抛物线是轴对称图形,解题中应积极捕捉,创造对称关系,以便从整体上把握问题,由抛物线捕捉对称信息的方式有:1.从抛物线上两点的纵坐标相等获得对称信息;2.从抛物线上两点之间的线段被抛物线的对称轴垂直平分获得对称信息.2.若关于x的函数y=(a-2)x2-(2a-1)x+a的图象与坐标轴有两个交点,则a可取的值为;1.如图是二次函数y1=ax2+bx+c和一次函数y2=mx+n的图象,观察图象写出y2≥y1时,x的取值范围是________;课外作业:3.已知抛物线y=ax2+bx+c(a<0)经过点(-1,0),且满足4a+2b+c>0.以下结论:①a+b>0;②a+c>0;③-a+b+c>0;④b2-2ac5a2.其中正确的个数有()(A)1个(B)2个(C)3个(D)4个

1 / 37
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功