公共基础知识课程简介计算机二级考试是以程序设计为主的计算机等级考试,目的是促进考生学习程序设计的热情,提高考生的程序设计水平。而程序设计离不开算法、软件工程等知识的。本课程作为计算机二级考试的公共基础课程,从理论的角度对数据结构、软件工程、结构化程序设计与面向对象的程序设计、数据库基础知识进行了简单的介绍,扩展考生的知识面,并对程序设计知识有一个系统的了解。本课程一共有四个部分。第一部分,主要介绍算法的基本概念,数据结构的基本概念和定义,线性表及其基本运算,二叉树的基本概念、存储结构及其应用,并介绍了一些常用的算法;第二部分,主要介绍程序设计的方法与风格,结构化程序设计,面向对象的程序设计方法,对象,方法,属性及继承与多态性;第三部分,主要介绍软件工程的基本概念,结构化分析方法,结构化设计方法,软件测试的基本方法和程序的调试方法,从工程的角度对软件开发进行了介绍;第四部分,主要介绍数据库,数据库管理系统,数据库系统的基本概念,数据模型,实体联系模型及E-R图等基本概念,关系代数理论中的基本运算,数据库设计的基本方法和步骤。本课程作为公共基础课,在有限的篇幅和学时的情况下,当然不能将所涉及到的相关知识都讲透,如果对这些知识感兴趣,可去查阅相关主题的书籍,深入学习。第一章的参考书:各类《数据结构》教程第二章的参考书:各类介绍程序设计与算法、面向对象程序设计的教程第三章的参考书:各类《软件工程》教程第四章的参考书:各类《数据库原理与应用》教程的基础部分学习方法本课程的学习,要求认真看书,对书中的内容进行归纳和总结,将所有的知识穿成一条线。在看书的过程中,要仔细阅读,对书中重要的内容、概念要记住,因为本课程的考试是采用标准化的考试方式,单选和填空两种题型,因此要求考生对知识的掌握要准确,不能模棱两可。反复地看书,做题,因为本课程主要是一些理论的知识,要求记忆的内容很多,因此,必须多做题,多看书,在做题的过程中检验自己对知识的理解和掌握情况是否到位、正确。自己总结课程的内容,也是帮助理解和记忆的好方法。第一章数据结构与算法一、学习目标与要求1.了解算法的基本概念和一些常用的算法,学会计算算法的时间复杂度;2.掌握数据结构的基本概念,并了解数据的逻辑结构和存储结构,学会利用图形的方式表示数据结构;3.了解线性表的基本概念,并掌握线性表的顺序存储结构以及顺序存储的线性表的基本运算;4.了解栈和队列的基本概念,并掌握它们的基本运算;5.了解线性链表的基本概念,并掌握线性链表的基本运算,同时,了解循环链表的基本概念和基本操作;6.理解树的概念,尤其是二叉树的基本概念和相关性质,掌握二叉树的存储结构和遍历技术;7.掌握查找技术,学会利用顺序查找和二分查找在数列中查找指定的数据;8.学会利用相关的排序技术实现无序数列的排序操作。二、内容要点(一)算法1.算法的基本概念算法是指解题方案的准确而完整的描述。即是一组严谨地定义运算顺序的规则,并且每一个规则都是有效的,且是明确的,没有二义性,同时该规则将在有限次运算后可终止。1)算法的基本特征(1)可行性由于算法的设计是为了在某一个特定的计算工具上解决某一个实际的问题而设计的,因此,它总是受到计算工具的限制,使执行产生偏差。如:计算机的数值有效位是有限的,当大数和小数进行运算时,往往会因为有效位数的影响而使小数丢失,因此,在算法设计时,应该考虑到这一点。(2)确定性算法的设计必须是每一个步骤都有明确的定义,不允许有模糊的解释,也不能有多义性。例如,一个实际的问题,小宝和萍萍共有12个苹果,小宝比萍萍多4个,请问小宝和萍萍各有几个苹果?这个问题,我们可以立一个方程412yxyx来求解,要求x和y的值,公式是正确的,但如何让计算能够进行计算,我们的算法不能把公式直接输进去,而应该设计出解题的步骤和过程。即设计的算法是计算工具所能够正常解决问题的过程。(3)有穷性算法的有穷性,即在一定的时间是能够完成的,即算法应该在计算有限个步骤后能够正常结束。例如,在数学中的无穷级数,在计算机中只能求有限项,即计算的过程是有穷的。(4)拥有足够的情报算法的执行与输入的数据和提供的初始条件相关,不同的输入或初始条件会有不同的输出结果,提供准确的初始条件和数据,才能使算法正确执行。2)算法的基本要素一是数据对象的运算和操作,二是算法的控制结构。(1)算法中对数据的运算和操作算法实际上是按解题要求从环境能进行的所有操作中选择合适的操作所组成的一组指令序列。即算法是计算机所能够处理的操作所组成的指令序列。(2)算法的控制结构算法的功能不仅取决于所选用的操作,而且还与各操作之间的顺序有关。在算法中,操作的执行顺序又称算法的控制结构,一般的算法控制结构有三种:顺序结构、选择结构和循环结构。在算法描述是,有相关的工具对这三种结构进行描述,常用的描述工具有:流程图、N-S结构图和算法描述语言等。3)算法设计的基本方法为用计算机解决实际问题而设计的算法,即是计算机算法。通常的算法设计有如下几种:(1)列举法列举法的基本思想是,根据提出的问题,列举出所有可能的情况,并用问题中给定的条件检验哪些是满足条件的,哪些是不满足条件的。列举法通常用于解决“是否存在”或“有哪些可能”等问题。例如,我国古代的趣味数学题:“百钱买百鸡”、“鸡兔同笼”等,均可采用列举法进行解决。使用列举法时,要对问题进行详细的分析,将与问题有关的知识条理化、完备化、系统化,从中找出规律。(2)归纳法归纳法的基本思想是,通过列举少量的特殊情况,经过分析,最后找出一般的关系。归纳是一种抽象,即从特殊现象中找出一般规律。但由于在归纳法中不可能对所有的情况进行列举,因此,该方法得到的结论只是一种猜测,还需要进行证明。(3)递推递推,即是从已知的初始条件出发,逐次推出所要求的各个中间环节和最后结果。其中初始条件或问题本身已经给定,或是通过对问题的分析与化简而确定。递推的本质也是一种归纳,递推关系式通常是归纳的结果。例如,裴波那契数列,是采用递推的方法解决问题的。(4)递归在解决一些复杂问题时,为了降低问题的复杂程序,通常是将问题逐层分解,最后归结为一些最简单的问题。这种将问题逐层分解的过程,并没有对问题进行求解,而只是当解决了最后的问题那些最简单的问题后,再沿着原来分解的逆过程逐步进行综合,这就是递归的方法。递归分为直接递归和间接递归两种方法。如果一个算法直接调用自己,称为直接递归调用;如果一个算法A调用另一个算法B,而算法B又调用算法A,则此种递归称为间接递归调用。(5)减半递推技术减半递推即将问题的规模减半,然后,重复相同的递推操作。例如,一元二次方程的求解。(6)回溯法有些实际的问题很难归纳出一组简单的递推公式或直观的求解步骤,也不能使用无限的列举。对于这类问题,只能采用试探的方法,通过对问题的分析,找出解决问题的线索,然后沿着这个线索进行试探,如果试探成功,就得到问题的解,如果不成功,再逐步回退,换别的路线进行试探。这种方法,即称为回溯法。如人工智能中的机器人下棋。2.算法复杂度算法的复杂度包括时间复杂度和空间复杂度。1)时间复杂度即实现该算法需要的计算工作量。算法的工作量用算法所执行的基本运算次数来计算。同一个问题规模下,如果算法执行所需要的基本次数取决于某一特定输入时,可以用以下两种方法来分析算法的工作量:算法工作量=f(n)(1)平均性态用各种特定输入下的基本运算次数的加权平均值来度量算法的工作量。设x是某个可能输入中的某个特定输入,p(x)是x出现的概率,t(x)是算法在输入为x时所执行的基本运算次数,则算法的平均性态定义为:nDxxtxpnA)()()(Dn表示当规模为n时,算法执行时所有可能输入的集合。(2)最坏情况复杂度指在规模为n时,算法所执行的基本运算的最大次数。它定义为:)}({max)(xtnWnDx例如,在具有n个元素的数列中搜索一个数x。平均性态:nqqnnqinqtpnAniinii)1(2)1()1()(111即该数在数列中任何位置出现的数列是相同的,也有可能不存在,存在的概率为q。如果有一半的机会存在,则概率q为1/2,平均性态:nnnnA43)211(221)1()(如果查找的元素一定在数列中,则每个数存在的概率即为1,则平均性态为:221)(nnnA最坏情况分析:即要查找的元素X在数列的最后或不在数列中,显然,它的最坏情况复杂度为:nnitnWi}11|max{)(2)算法的空间复杂度指要执行该算法所需要的内存空间。算法所占用的内存空间包括算法程序所占的空间、输入的初始数据所占的存储空间以及算法执行过程中所需要的额外空间,如执行过程中工作单元以及某种数据结构所需要的附加存储空间等。(二)数据结构的基本概念1.概念数据结构是指相互有关联的数据元素的集合。它包括以下两个方面:表示数据元素的信息表示各数据之间的前后件关系1)数据的逻辑结构是指反映数据元素之间的逻辑关系的数据结构。数据的逻辑结构有两个要素:数据元素的集合,记作D数据之间的前后件关系,记作R则数据结构B=(D,R)2)数据的存储结构数据的逻辑结构在计算机存储空间中的存放形式称为数据的存储结构,或数据的物理结构。即数据存储时,不仅要存放数据元素的信息,而且要存储数据元素之间的前后件关系的信息。通常的数据存储结构有顺序、链接、索引等存储结构。2.数据结构的图形表示数据结构的图形表示有两个元素:中间标有元素值的方框表示数据元素,称为数据结点用有向线段表示数据元素之间的前后件关系,即有向线段从前件结点指向后件结点注意:在结构图中,没有前件的结点称为根结点,没有后件的结点称为终端结点,也称叶子结点。3.线性结构与非线性结构如果一个数据元素都没有,该数据结构称为空数据结构;在空数据结构中插入一个新的元素后数据结构变为非空数据结构;将数据结构中的所有元素均删除,则该数据结构变成空数据结构。如果一个非空的数据结构满足如下条件,则该数据结构为线性结构:有且只有一个根结点每一个结点最多只有一个前件,也最多只有一个后件线性结构又称线性表。注意:在线性结构表中插入或删除元素,该线性表仍然应满足线性结构。如果一个数据结构不满足线性结构,则称为非线性结构。(三)线性表及其顺序存储结构1.基本概念线性表是最常用的数据结构,它由一组数据元素组成。注意:这里的数据元素是一个广义的数据元素,并不仅仅是指一个数据。如,矩阵、学生记录表等。非空线性表的结构特征:有且只有一个根结点,它无前件有且只有一个终端结点,它无后件除根结点和终端结点之外,所有的结点有且只有一个前件和一个后件。线性表中结点的个数称为结点的长度n。当n=0时,称为空表。2.顺序存储结构顺序存储结构的特点:线性表中所有的元素所占的存储空间是连续的线性表中各数据元素在存储空间中是按逻辑顺序依次存放的通常,顺序存储结构中,线性表中每一个数据元素在计算机存储空间中的存储地址由该元素在线性表中的位置序号唯一确定。线性表的顺序存储结构下的基本运算:在指定位置插入一个元素删除线性表中的指定元素查找某个或某些特定的元素线性表的排序按要求将一个线性表拆分为多个线性表将多个线性表合并为一个线性表复制线性表逆转一个线性表3.线性表的基本操作1)顺序表的插入运算在顺序存储结构的线性表中插入一个元素。注意:找到插入位置后,将插入位置开始的所有元素从最后一个元素开始顺序后移。另外,在定义线性表时,一定要定义足够的空间,否则,将不允许插入元素。2)顺序表的删除运算在顺序在存储结构的线性表中删除一个元素。注意:找到删除的数据元素后,从该元素位置开始,将后面的元素一一向前移动,在移动完成后,线性表的长度减1(四)栈和队列1.栈及其基本运算1)栈栈是一种特殊的线性表,它是限定在一端进行插入和删除的线性表。它的插入和删除只能在表的一端进行,而另一端是封闭的,不允许进行插入和删除操作。在栈中,允许插入和删除操作一端称为栈顶,不允许插入和删除操作的一端则称为栈底。栈