互联网协议入门

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

互联网协议入门作者:阮一峰日期:2012年5月31日我们每天使用互联网,你是否想过,它是如何实现的?全世界几十亿台电脑,连接在一起,两两通信。上海的某一块网卡送出信号,洛杉矶的另一块网卡居然就收到了,两者实际上根本不知道对方的物理位置,你不觉得这是很神奇的事情吗?互联网的核心是一系列协议,总称为互联网协议(InternetProtocolSuite)。它们对电脑如何连接和组网,做出了详尽的规定。理解了这些协议,就理解了互联网的原理。下面就是我的学习笔记。因为这些协议实在太复杂、太庞大,我想整理一个简洁的框架,帮助自己从总体上把握它们。为了保证简单易懂,我做了大量的简化,有些地方并不全面和精确,但是应该能够说清楚互联网的原理。=================================================互联网协议入门作者:阮一峰一、概述1.1五层模型互联网的实现,分成好几层。每一层都有自己的功能,就像建筑物一样,每一层都靠下一层支持。用户接触到的,只是最上面的一层,根本没有感觉到下面的层。要理解互联网,必须从最下层开始,自下而上理解每一层的功能。如何分层有不同的模型,有的模型分七层,有的分四层。我觉得,把互联网分成五层,比较容易解释。如上图所示,最底下的一层叫做实体层(PhysicalLayer),最上面的一层叫做应用层(ApplicationLayer),中间的三层(自下而上)分别是链接层(LinkLayer)、网络层(NetworkLayer)和传输层(TransportLayer)。越下面的层,越靠近硬件;越上面的层,越靠近用户。它们叫什么名字,其实并不重要。只需要知道,互联网分成若干层就可以了。1.2层与协议每一层都是为了完成一种功能。为了实现这些功能,就需要大家都遵守共同的规则。大家都遵守的规则,就叫做协议(protocol)。互联网的每一层,都定义了很多协议。这些协议的总称,就叫做互联网协议(InternetProtocolSuite)。它们是互联网的核心,下面介绍每一层的功能,主要就是介绍每一层的主要协议。二、实体层我们从最底下的一层开始。电脑要组网,第一件事要干什么?当然是先把电脑连起来,可以用光缆、电缆、双绞线、无线电波等方式。这就叫做实体层,它就是把电脑连接起来的物理手段。它主要规定了网络的一些电气特性,作用是负责传送0和1的电信号。三、链接层3.1定义单纯的0和1没有任何意义,必须规定解读方式:多少个电信号算一组?每个信号位有何意义?这就是链接层的功能,它在实体层的上方,确定了0和1的分组方式。3.2以太网协议早期的时候,每家公司都有自己的电信号分组方式。逐渐地,一种叫做以太网(Ethernet)的协议,占据了主导地位。以太网规定,一组电信号构成一个数据包,叫做帧(Frame)。每一帧分成两个部分:标头(Head)和数据(Data)。标头包含数据包的一些说明项,比如发送者、接受者、数据类型等等;数据则是数据包的具体内容。标头的长度,固定为18字节。数据的长度,最短为46字节,最长为1500字节。因此,整个帧最短为64字节,最长为1518字节。如果数据很长,就必须分割成多个帧进行发送。3.3MAC地址上面提到,以太网数据包的标头,包含了发送者和接受者的信息。那么,发送者和接受者是如何标识呢?以太网规定,连入网络的所有设备,都必须具有网卡接口。数据包必须是从一块网卡,传送到另一块网卡。网卡的地址,就是数据包的发送地址和接收地址,这叫做MAC地址。每块网卡出厂的时候,都有一个全世界独一无二的MAC地址,长度是48个二进制位,通常用12个十六进制数表示。前6个十六进制数是厂商编号,后6个是该厂商的网卡流水号。有了MAC地址,就可以定位网卡和数据包的路径了。3.4广播定义地址只是第一步,后面还有更多的步骤。首先,一块网卡怎么会知道另一块网卡的MAC地址?回答是有一种ARP协议,可以解决这个问题。这个留到后面介绍,这里只需要知道,以太网数据包必须知道接收方的MAC地址,然后才能发送。其次,就算有了MAC地址,系统怎样才能把数据包准确送到接收方?回答是以太网采用了一种很原始的方式,它不是把数据包准确送到接收方,而是向本网络内所有计算机发送,让每台计算机自己判断,是否为接收方。上图中,1号计算机向2号计算机发送一个数据包,同一个子网络的3号、4号、5号计算机都会收到这个包。它们读取这个包的标头,找到接收方的MAC地址,然后与自身的MAC地址相比较,如果两者相同,就接受这个包,做进一步处理,否则就丢弃这个包。这种发送方式就叫做广播(broadcasting)。有了数据包的定义、网卡的MAC地址、广播的发送方式,链接层就可以在多台计算机之间传送数据了。四、网络层4.1网络层的由来以太网协议,依靠MAC地址发送数据。理论上,单单依靠MAC地址,上海的网卡就可以找到洛杉矶的网卡了,技术上是可以实现的。但是,这样做有一个重大的缺点。以太网采用广播方式发送数据包,所有成员人手一包,不仅效率低,而且局限在发送者所在的子网络。也就是说,如果两台计算机不在同一个子网络,广播是传不过去的。这种设计是合理的,否则互联网上每一台计算机都会收到所有包,那会引起灾难。互联网是无数子网络共同组成的一个巨型网络,很像想象上海和洛杉矶的电脑会在同一个子网络,这几乎是不可能的。因此,必须找到一种方法,能够区分哪些MAC地址属于同一个子网络,哪些不是。如果是同一个子网络,就采用广播方式发送,否则就采用路由方式发送。(路由的意思,就是指如何向不同的子网络分发数据包,这是一个很大的主题,本文不涉及。)遗憾的是,MAC地址本身无法做到这一点。它只与厂商有关,与所处网络无关。这就导致了网络层的诞生。它的作用是引进一套新的地址,使得我们能够区分不同的计算机是否属于同一个子网络。这套地址就叫做网络地址,简称网址。于是,网络层出现以后,每台计算机有了两种地址,一种是MAC地址,另一种是网络地址。两种地址之间没有任何联系,MAC地址是绑定在网卡上的,网络地址则是管理员分配的,它们只是随机组合在一起。网络地址帮助我们确定计算机所在的子网络,MAC地址则将数据包送到该子网络中的目标网卡。因此,从逻辑上可以推断,必定是先处理网络地址,然后再处理MAC地址。4.2IP协议规定网络地址的协议,叫做IP协议。它所定义的地址,就被称为IP地址。目前,广泛采用的是IP协议第四版,简称IPv4。这个版本规定,网络地址由32个二进制位组成。习惯上,我们用分成四段的十进制数表示IP地址,从0.0.0.0一直到255.255.255.255。互联网上的每一台计算机,都会分配到一个IP地址。这个地址分成两个部分,前一部分代表网络,后一部分代表主机。比如,IP地址172.16.254.1,这是一个32位的地址,假定它的网络部分是前24位(172.16.254),那么主机部分就是后8位(最后的那个1)。处于同一个子网络的电脑,它们IP地址的网络部分必定是相同的,也就是说172.16.254.2应该与172.16.254.1处在同一个子网络。但是,问题在于单单从IP地址,我们无法判断网络部分。还是以172.16.254.1为例,它的网络部分,到底是前24位,还是前16位,甚至前28位,从IP地址上是看不出来的。那么,怎样才能从IP地址,判断两台计算机是否属于同一个子网络呢?这就要用到另一个参数子网掩码(subnetmask)。所谓子网掩码,就是表示子网络特征的一个参数。它在形式上等同于IP地址,也是一个32位二进制数字,它的网络部分全部为1,主机部分全部为0。比如,IP地址172.16.254.1,如果已知网络部分是前24位,主机部分是后8位,那么子网络掩码就是11111111.11111111.11111111.00000000,写成十进制就是255.255.255.0。知道子网掩码,我们就能判断,任意两个IP地址是否处在同一个子网络。方法是将两个IP地址与子网掩码分别进行AND运算(两个数位都为1,运算结果为1,否则为0),然后比较结果是否相同,如果是的话,就表明它们在同一个子网络中,否则就不是。比如,已知IP地址172.16.254.1和172.16.254.233的子网掩码都是255.255.255.0,请问它们是否在同一个子网络?两者与子网掩码分别进行AND运算,结果都是172.16.254.0,因此它们在同一个子网络。总结一下,IP协议的作用主要有两个,一个是为每一台计算机分配IP地址,另一个是确定哪些地址在同一个子网络。4.3IP数据包根据IP协议发送的数据,就叫做IP数据包。不难想象,其中必定包括IP地址信息。但是前面说过,以太网数据包只包含MAC地址,并没有IP地址的栏位。那么是否需要修改数据定义,再添加一个栏位呢?回答是不需要,我们可以把IP数据包直接放进以太网数据包的数据部分,因此完全不用修改以太网的规格。这就是互联网分层结构的好处:上层的变动完全不涉及下层的结构。具体来说,IP数据包也分为标头和数据两个部分。标头部分主要包括版本、长度、IP地址等信息,数据部分则是IP数据包的具体内容。它放进以太网数据包后,以太网数据包就变成了下面这样。IP数据包的标头部分的长度为20到60字节,整个数据包的总长度最大为65,535字节。因此,理论上,一个IP数据包的数据部分,最长为65,515字节。前面说过,以太网数据包的数据部分,最长只有1500字节。因此,如果IP数据包超过了1500字节,它就需要分割成几个以太网数据包,分开发送了。4.4ARP协议关于网络层,还有最后一点需要说明。因为IP数据包是放在以太网数据包里发送的,所以我们必须同时知道两个地址,一个是对方的MAC地址,另一个是对方的IP地址。通常情况下,对方的IP地址是已知的(后文会解释),但是我们不知道它的MAC地址。所以,我们需要一种机制,能够从IP地址得到MAC地址。这里又可以分成两种情况。第一种情况,如果两台主机不在同一个子网络,那么事实上没有办法得到对方的MAC地址,只能把数据包传送到两个子网络连接处的网关(gateway),让网关去处理。第二种情况,如果两台主机在同一个子网络,那么我们可以用ARP协议,得到对方的MAC地址。ARP协议也是发出一个数据包(包含在以太网数据包中),其中包含它所要查询主机的IP地址,在对方的MAC地址这一栏,填的是FF:FF:FF:FF:FF:FF,表示这是一个广播地址。它所在子网络的每一台主机,都会收到这个数据包,从中取出IP地址,与自身的IP地址进行比较。如果两者相同,都做出回复,向对方报告自己的MAC地址,否则就丢弃这个包。总之,有了ARP协议之后,我们就可以得到同一个子网络内的主机MAC地址,可以把数据包发送到任意一台主机之上了。五、传输层5.1传输层的由来有了MAC地址和IP地址,我们已经可以在互联网上任意两台主机上建立通信。接下来的问题是,同一台主机上有许多程序都需要用到网络,比如,你一边浏览网页,一边与朋友在线聊天。当一个数据包从互联网上发来的时候,你怎么知道,它是表示网页的内容,还是表示在线聊天的内容?也就是说,我们还需要一个参数,表示这个数据包到底供哪个程序(进程)使用。这个参数就叫做端口(port),它其实是每一个使用网卡的程序的编号。每个数据包都发到主机的特定端口,所以不同的程序就能取到自己所需要的数据。端口是0到65535之间的一个整数,正好16个二进制位。0到1023的端口被系统占用,用户只能选用大于1023的端口。不管是浏览网页还是在线聊天,应用程序会随机选用一个端口,然后与服务器的相应端口联系。传输层的功能,就是建立端口到端口的通信。相比之下,网络层的功能是建立主机到主机的通信。只要确定主机和端口,我们就能实现程序之间的交流。因此,Unix系统就把主机+端口,叫做套接字(socket)。有了它,就可以进行网络应用程序开发了。5.2UDP协议现在,我们必须在数据包中加入端口信息,这就需要新的协议。最简单的实现叫做UDP协议,它的格式几

1 / 19
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功