第一单元图形的变换1.轴对称的意义:把一个图形沿着某一条直线对折,如果它能与另一条图形完全重合,那么这两个图形称轴对称。2.轴对称的性质:相对应的点到轴对称距离相等。3.轴对称的特征:沿对称轴对折,对应点重合,对应线段重合,对应角重合。4.旋转的意义:物体绕某一点运动,这种运动叫旋转。5.图形旋转的性质:图形旋转,对应点、对应线段都旋转相同的度数,对应点到旋转点的距离相等,对应角相等。6.图形旋转的特征:图形旋转后,形状、大小都没有变化,只是位置变了。设计图案的方法:1.设计图案基本方法:利用平移、旋转或对称可以设计简单而美丽的图案.2.运用平移方法设计图案的步骤:(1)选好基本图案;(2)确定平移的方向;(3)确定平移的距离;(4)画出平移后的图形。3.运用旋转方法设计图案的步骤:(1)选好基本图案;(2)确定旋转点;(3)确定旋转角度;(4)依次画出旋转后的图形。4.运用对称方法设计图案的步骤:(1)选好基本图案;(2)确定对称轴;(3)画出基本图案的对称图形。课堂练习1、判断下面各图是否是轴对称图形,如果是,请指出它们的对称轴。2、画对称图形例题1:平移图形3、向右平移两个单位,画出图例题2:旋转4、三角形ABC绕点B逆时针旋转90°的图形。5、欣赏设计:连续向右平移1个单位得到的图形第二单元因数和倍数一、倍数与因数的关系【知识点1】倍数与因数之间的关系是相互的,不能单独存在。例如:6是倍数、3和2是因数。(×)改正:6是3和2的倍数,3和2是6的因数。练习:(1)8×5=40,()和()是()的因数,()是()和()的倍数。(2)因为36÷9=4,所以()是()和()的倍数,()和()是()的因数。(3)在18÷6=3中,18是6的(),3和6是()的()。(4)在14÷7=2中,()能被()整除,()能整除(),()是()的倍数,()是()的因数。【知识点2】倍数因数只考虑正数,小数、分数等不讨论倍数、因数的问题。例如:0.6×5=3,虽然可以表示0.6的5倍是3但是,0.6是小数是不讨论倍数因数问题。因此类似的:因为0.6×5=3,所以3是0.6和5的倍数。是错误的说法。(1)有5÷2=2.5可知()A、5能被2除尽B、2能被5整除C、5能被2整除D、2是5的因数,5是2的倍数(2)36÷5=7……1可知()A、5和7是36的因数B、5能整除36C、36能被5除尽D、36是5的倍数(3)属于因数和倍数关系的等式是()A、2×0.25=0.5B、2×25=50C、2×0=0【知识点3】没有前提条件确定倍数与因数例如:36的因数有()。确定一个数的所有因数,我们应该从1的乘法口诀一次找出。如:1×36=36、2×18=36、3×12=36、4×9=36、6×6=36因此36的所有因数为:1、2、3、4、6、9、12、18、36重复的和相同的只算一个因数。一个数的因数个数是有限的,最小的因数是1,最大的因数是他本身。例如:7的倍数()。确定一个数的倍数,同样依据乘法口诀,如:1×7=7、2×7=14、3×7=21、4×7=28、5×7=35……还有很多。因此7的倍数有:7、14、21、28、35、42……一个数的倍数个数是无限的,最小的倍数是他本身,没有最大的倍数。练习:(1)20的因数有:(2)45的因数有:(3)24的倍数有:(4)17的倍数有:【知识点4】有前提条件的情况下确定倍数与因数例如:25以内5的倍数有(5、10、15、20、25)。例如:5、1、20、35、40、10、140、2以上各数中,是20的因数的数有();是20的倍数的数有();既是20的倍数又是20的因数的数有()。首先我们应该明确20的因数有哪些,然后在上面的数中一次找出,特别注意没有在以上数字中出现的因数是不能填入括号的!练习:(1)100以内19的倍数有:(2)在4,6,8,10,12,16,18,20,22,24,28,32,36中4的倍数:()36的因数:()(3)一个数既是6的倍数,又是60的因数,这个数可能是(4)用1、5、6、8、9组成的数中,是3的倍数的数有是2的倍数的数有。【知识点5】关于倍数因数的一些概念性问题一个数的因数个数是有限的,最小的因数是1,最大的因数是他本身。一个数的倍数个数是无限的,最小的倍数是他本身,没有最大的倍数。1是任一自然数(0除外)的因数。也是任一自然数(0除外)的最小因数。一个数的因数最少有1个,这个数是1。除1以外的任何整数至少有两个因数(0除外)。一个数的因数都小于等于他本身,一个数的倍数都大于等于他本身。一个数的最小倍数=一个数的最大因数=这个数练习:(1)一个数的倍数个数是(),最小的倍数是(),()最大的倍数。(2)一个数的因数的个数是(),最小的因数是(),最大的因数是()。(3)在研究因数和倍数时,我们所说的数一般指的是()。(4)判断并改正:一个数的因数都比他的倍数小。()1是所有的自然数的因数。()一个数的因数一定小于他本身。()一个数的倍数一定比他的因数大。()任何一个数的倍数个数一定比因数个数多。()二、2、3、5的倍数的特征【知识点1】2、3、5的倍数特征个位上是0,2,4,6,8的数都是2的倍数。例如:202、480、304,都能被2整除。个位上是0或5的数,是5的倍数。例如:5、30、405都能被5整除。一个数各个数位上的数的和是3的倍数,这个数就是3的倍数。例如:12、108、204都能被3整除。个位上是0的数既是2的倍数又是5的倍数。例如:80、20、70、130等。个位上是0且各位数字的和是3的倍数,那么这个数既是2的倍数又是3和5的倍数。例如:120、90、180、270等。自然数按能否被2整除的特征可分为奇数和偶数。也就是说是2的倍数的数也叫做偶数(0也是偶数),不是2的倍数的数也叫做奇数。(因此在自然数中,除了奇数就是偶数)偶数+偶数=偶数偶数-偶数=偶数偶数×偶数=偶数偶数+奇数=奇数偶数-奇数=奇数偶数×奇数=偶数奇数+奇数=偶数奇数-偶数=奇数奇数×奇数=奇数奇数-奇数=偶数无论多少个偶数相加都是偶数偶数个奇数相加是偶数奇数个奇数相加是奇数练习:(1)在27、68、44、72、587、602、431、800中,把奇数和偶数分别填在相应的圈内。奇数偶数(2)猜猜我是谁。我比10小,是3的倍数,我可能是()。我在10和20之间,又是3和5的倍数,我是()。我是一个两位数且是奇数,十位数字和个位数字的和是18,我是()。(3)同时是2和3的倍数中,最小的是(),两位数中最大的是()。(4)226至少增加()就是3的倍数,至少减少()就是5的倍数。(5)在()里填上一个数,使87()是3的倍数,共有()种填法。A、1B、2C、3D、4(4)判断并改正:两个奇数的和,可能是偶数。()最小的奇数是1,最小的偶数是2.()一个自然数不是奇数就是偶数。()