人工神经网络试题及答案

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

QuestionOne:TheweightupdatingrulesoftheperceptronandKohonenneuralnetworkare_____.QuestionTwo:Thelimitationoftheperceptronisthatitcanonlymodellinearlyseparableclasses.ThedecisionboundaryofRBFis__________linear______________________whereasthedecisionboundaryofFFNNis__________________non-linear___________________________.QuestionThree:TheactivationfunctionoftheneuronofthePerceptron,BPnetworkandRBFnetworkarerespectively________________;________________;______________.QuestionFour:Pleasepresenttheidea,objectivefunctionoftheBPneuralnetworks(FFNN)andthelearningruleoftheneuronattheoutputlayerofFFNN.Youareencouragedtowritedowntheprocesstoproducethelearningrule.QuestionFive:PleasedescribethesimilarityanddifferencebetweenHopfieldNNandBoltzmannmachine.相同:Bothofthemaresingle-layerinter-connectionNNs.Theybothhavesymmetricweightmatrixwhosediagonalelementsarezeroes.不同:ThenumberoftheneuronsofHopfieldNNisthesameasthenumberofthedimension(K)ofthevectordata.Ontheotherhand,BoltzmannmachinewillhaveK+Lneurons.ThereareLhiddenneuronsBoltzmannmachinehasKneuronsthatservesasbothinputneuronsandoutputneurons(Auto-associationBoltzmannmachine).QuestionSix:Pleaseexplainthetermsintheaboveequationindetail.PleasedescribetheweightupdatingequationsofeachnodeinthefollowingFFNNusingtheBPlearningalgorithm.(PPT原题y=φ(net)=φ(w0+w1x1+w2x2))W0=w0+W1=w1+W2=w2+QuestionSeven:PleasetryyourbesttopresentthecharacteristicsofRBFNN.(1)RBFnetworkshaveonesinglehiddenlayer.(2)InRBFtheneuronmodelofthehiddenneuronsisdifferentfromtheoneoftheoutputnodes.(3)ThehiddenlayerofRBFisnon-linear,theoutputlayerofRBFislinear.(4)TheargumentofactivationfunctionofeachhiddenneuroninaRBFNNcomputestheEuclideandistancebetweeninputvectorandthecenterofthatunit.(5)RBFNNusesGaussianfunctionstoconstructlocalapproximationstonon-linearI/Omapping.QuestionEight:Generally,theweightvectorsofallneuronsofSOMisadjustedintermsofthefollowingrule:wj(n+1)=wj(n)+η(n)hi(x)(di(x)j)(x(n)-wj(n)).Pleaseexplaineachtermintheaboveformula.:weightvalueofthej-thneuronatiterationn:neighborhoodfunctiondji:lateraldistanceofneuronsiandj:thelearningrate:thewinningneuronmostadjacenttoXX:oneinputexample

1 / 5
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功