第八篇统计与概率专题三十一数据的收集与处理一、考点扫描数据的收集与处理扇形统计图统计图表条形统计图折线统计图样本,总体制作统计图二、考点训练1.如图1是某市第一季度用电量的扇形统计图,则三月份用电量占第一季度用电量的百分比是()A.55%B.65%C.75%D.85%2.某校九(1)班的全体同学最喜欢的球类运动用图2所示的统计图来表示,下面说法正确的是()A.从图中可以直接看出喜欢各种球类的具体人数;B.从图中可以直接看出全班的总人数;C.从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的大小关系3.(06年龙岩市)下列几种调查适合作普查的是()A.调查全省的初中生每人一周的零花钱数;B.调查一批炮弹的杀伤半径;C.调查你所在班级全体学生的体重;D.调查全市食品市场上某食品的色素含量是否符合国家标准4.(2006年扬州市)下列四个统计图中,用来表示不同品种的奶牛的平均产量最为适合的是()5.(2006年重庆市)观察市统计局公布的“十五”时期重庆市农村居民人均收入每年比上一年增长率的统计图3,下列说法正确的是()A.2003年农村居民人均收入低于2002年;B.农村居民人均收入比上年增长率低于9%的有2年;C.农村居民人均收入最多时在2004年;D.农村居民人均收入每年比上一年的增长率有大有小,但农村居民人均收入在持续增加6.某区从2300名参加初中毕业升学统一考试数学测试的学生中随机抽取200名学生的试卷,成绩从低到高按59~89、90~119、120~134、135~150分成四组进行统计(最低成绩为59分,且分数均为整数),整理后绘出如图4所示的各分数段频数分布直方图的一部分.已知前三个小组从左到右的频率依次为0.25,0.30,0.35.(1)第四组的频数为_______,并将频数分布直方图补充完整;(2)若90分及其以上成绩为及格,则此次测试中数学成绩及格以上(含及格)的人数约为________.三、例题剖析1、下图是某班学生上学的三种方式(乘车、步行、骑车)的人数分布直方图和扇形图.(1)求该班有多少名学生;(2)补上人数分布直方图的空缺部分;(3)若全年级有800人,估计该年级步行人数.2、(2006年江阴市)在“3.15”消费者权益日的活动中,对甲、乙两家商场售后服务的满意度进行了调查.如图反映了被抽查用户对两家商场售后服务的满意程度(以下称:用户满意度),分为很不满意、不满意、较满意、很满意四个等级,并依次记为1分、2分、3分、4分.(1)请问:甲商场的用户满意度分数的众数为________;乙商场的用户满意度分数的众数为_________.(2)分别求出甲、乙两商场的用户满意度分数的平均值(计算结果精确到0.01).(3)请你根据所学的统计知识,判断哪家商场的用户满意度较高,并简要说明理由.3、射击集训队在一个月的集训中,对甲、乙两名运动员进行了10次测试,成绩如下:甲:9,6,6,8,7,6,6,8,8,6;乙:4,5,7,6,8,7,8,8,8,9.如果你是教练员,会选择哪位运动员参加比赛?请说明理由.四、综合应用1、(2006年深圳市)某中学图书馆将图书分为自然科学、文学艺术、社会百科、数学四类.在“深圳读书月”活动月期间,为了解图书的借阅情况.图书管理员对本月各类图书的借阅量进行了统计,图1和图2是图书管理员通过采集数据后,绘制的两幅不完整的频率分布表与频数分布直方图.请你根据图表中提供的信息,解答以下问题:频率分布表:图1图2(1)填充图1频率分布表中的空格.(2)在图2中,将表示“自然科学”的部分补充完整.(3)若该学校打算采购一万册图书,请你估算“数学”类图书应采购多少册较合适?(4)请同学们改用扇形统计图来反映图书馆的借书情况.图书种类频数频率自然科学4000.20文学艺术10000.50社会百科5000.25数学专题三十二数据的集中与离散一、考点扫描数据的集中与离散算术平均数平均数加权平均数中位数众数极差方差--标准差二、考点训练1.刘翔在北京奥运会前刻苦进行110米跨栏训练,教练对他20次的训练成绩进行分析,判断他的成绩是否稳定,则教练需要知道刘翔这20次成绩的()A.众数B.平均数C.频数D.方差2.(2006年德阳市)一组数据:1,3,2,3,1,0,2的中位数是()A.0B.1C.2D.33.学校快餐店有2元,3元,4元三种价格的饭菜供师生选择(每人限购一份).右图是某月的销售情况统计图.则该校师生购买饭菜用的平均数和众数分别是()A.2.95元,3元B.3元,3元C.3元,4元D.2.95元,4元4.(2006年大连市)一鞋店试销一种新款女鞋,试销期间卖出情况如下表:型号2222.52323.52424.525数量(双)351015832对这个鞋店的经理来说最关心哪种型号的鞋畅销,则下列统计量对鞋店经理来说最有意义的是()A.平均数B.众数C.中位数D.标准差5.(2006年泉州市)小明与小华本学期都参加了5次数学考试(总分均为100分),数学老师想判断这两位同学的数学成绩谁更稳定,在作统计分析时,老师需比较这两人5次数学成绩的()A.平均数B.方差C.众数D.中位数6.(2006年金华市)一射击运动员在一次射击练习中打出的成绩如下表示:成绩(环)678910次数25643这次成绩的众数是________.7.(2006年怀化市)农科调查队调查水稻生长情况,测得10株水稻的高度如下:(单位:厘米)53,49,50,51,50,52,49,52,53,51.这个样本的方差是________.8.在“手拉手,献爱心”捐款活动中,某校初三年级5个班级的捐款数分别为260,220,240,280,290(单位:元),则这组数据的极差是______元.9.一组数据:65,60,70,80,75,85的中位数是_______.10.(2006年绍兴市)如图是小敏五次射击成绩的折线图,根据图示信息,则此五次成绩的平均数是_______环.三、例题剖析1、(2006年河南省)某公司员工的月工资情况统计如下表:员工人数2482084月工资(元)50004000200015001000700(1)分别计算该公司员工月工资的平均数,中位数和众数.(2)你认为用(1)中计算出的哪个数据来代表该公司员工的月工资水平更为合适?请简要说明理由;(3)请画出一种你认为适合的统计图来表示上面表格中的数据.2、(2006年临安市)某青年排球队12名队员的年龄情况如下:年龄(单位:岁)1819202122人数14322则这个队队员年龄的众数和中位数是()A.19,20B.19,19C.19,20.5D.20,193、在暑假开展的社会实践活动中,小丽同学帮助李大爷统计了一周内卖出A、B两种品牌雪糕的数量,记录数据如下表:品牌星期一星期二星期三星期四星期五星期六星期日A20222624252830B15202529323540品牌平均数方差A25B64.57(1)请你用统计表提供的数据完成上表;(2)若A种雪糕每支利润0.20元,B种雪糕每支利润0.15元,请你根据题中提供的信息,对李大爷购进雪糕提出建议,并简述你的理由.四、综合应用1、某校九年级(1)班积极响应校团委的号召,每位同学都向“希望工程”捐献图书,全班40名同学共捐图书320册,特别值得一提的是李扬、王州两位同学在父亲的支持下各捐献了50册图书,班长统计了全班捐书情况如下表(被粗心的马小虎用墨水污染了一部分):册数4567850人数68152(1)分别求出该班级捐献7册图书和8册图书的人数.(2)请算出捐书册数的平均数,中位数和众数,并判断其中哪些统计量不能反映该同学捐书册数的一般状况,说明理由.2、(2006年枣庄市)某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试758090面试937068根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用(精确到0.1)?(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4:3:3的比例确定个人成绩,那么谁将被录用?专题三十三频率与概率一、考点扫描二、考点训练1.某市对2400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为()A.400人B.150人C.60人D.15人2.(2006年河南省)有一个不透明的布袋中,红色、黑色、白色的玻璃共有40个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()A.6B.16C.18D.243.(2006年常德市)右图是某中学七年级学生参加课外活动人数的扇形统计图,若参加舞蹈类的学生有42人,则参加球迷活动的学生人数有()A.145B.147C.149D.1514.(2006年温州市)右图是由8块相同的等腰直角三角形黑白瓷砖镶嵌而成的正方形示意图,一只蚂蚁在上面自由爬动,并随机停留在某块瓷砖上,蚂蚁留在黑色瓷砖上的概率是_______.5.(2006年青岛市)一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2,根据上述数据,小亮可估计口袋中大约有_______个黑球.6.甲、乙、丙、丁四名运动员参加4×100米接力赛,甲必须为第一接力棒或第四接棒的运动员,那么这四名运动员在比赛过程的接棒顺序有()A.3种B.4种C.6种D.12种7.在一个有10万人的小镇,随机调查了2000人,其中有250人看中央电视台的早间新闻,在该镇随便问一个人,他看早间新闻的概率大约是________.8.某口袋中有红色、黄色、蓝色玻璃球共72个.小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的概率依次是35%,25%和40%,试估计口袋中三种玻璃球的数目依次是______.9.(2006年泉州市)在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球有3个、白球1个.搅匀后,从中同时摸出2个小球,请你写出这个实验中的一个可能事件:_________.三、例题剖析1、(2006年河南省)一枚均匀的正方体骰子,六个面分别标有数字1,2,3,4,5,6,连续抛掷两次,朝上的数字分别是m,n.若把m,n作为点A的横、纵坐标,那么点A(m,n)在函数y=2x的图象上的概率是多少?2、(2006年大连市)在围棋盒中有x颗黑色棋子和y颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是83.(1)试写出y与x的函数关系式.(2)若往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为0.5,求x和y的值.3、有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1,2,3,4四个数,另一个信封内的四张卡片上分别写出5,6,7,8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.(1)请你通过列表(或画树状图)计算甲获胜的概率;(2)你认为这个游戏公平吗?为什么?4、(2006年遂宁市)将分别标有数字2,3,5的三张质地,大小完全一样的卡片背面朝上放在桌面上.(1)随机抽取一张,求抽到奇数的概率;(2)随机抽取一张作为个位上的数字(不放