1中考中的一次函数应用题求解策略1试题概述一次函数应用题,因其综合了一元一次方程、一元一次不等式、二元一次方程组等内容,能实现数与形有机地结合,能体现分类讨论、对应、极端值等数学思想与方法,并且容易与现实生活中的重大事件联系起来以体现数学的应用价值,近年来一直是中考命题的热点。此外,由于中考考查二次函数内容时,大多是以二次函数与几何相结合的压轴题形式出现,而反比例函数应用题命题的范围又相对狭窄,因此一次函数应用题就一直是中考试题中最频繁出现的考点。一次函数应用题考查的最主要考点集中在三个方面:⑴学生对数形结合的认识和理解;⑵将实际问题转化为一次函数的能力,即数学建模能力;⑶分类讨论、极端值、对应关系、有序性的数学思想方法的考查。⑷对一次函数与方程、不等式关系的理解与转化能力。一次函数试题的命题形式多样,从近几年的中考题来看,可以大致归为以下几类:⑴方案设计问题(物资调运、方案比较);⑵分段函数问题(分段价格、几何动点);⑶由形求式(单个函数图象、多个函数图象)。⑷一次函数多种变量及其最值问题。2试题例析2.1方案设计问题⑴物资调运例1.(2008年重庆第27题)为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E两县。根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨。(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍。其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨。则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220200200运往E县的费用(元/吨)250220210为即使将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?解析:本题题干文字长,数量关系复杂,但只要弄懂了题意,并结合表格将数量关系进行整理,解决起来并不难。⑴直接用一元一次方程求解。运往D县的数量比运往E县的数量的2倍少20吨,设运往E县m吨,则运往D县(2m-20)吨,则m+(2m-20)=280,m=100,2m-20=180。(亦可用二元一次方程组求解)2⑵由⑴中结论,并结合题设条件,由A地运往D的赈灾物资为x吨,可将相应数量关系列表如下:A地(100吨)B(100吨)C(80吨)D县(180吨)x(220元/吨)180-60-x=120-x(200元/吨)60(200元/吨)E县(100吨)100-x(250/吨元)100-20-(100-x)=x-20(220元/吨)20(210元/吨)表格说明:①A、B、C、D、E各地后括号中的数字为调运量或需求量;②表格中含x的式子或数字,表示对应地点调运数量;③表格中其他括号中的数字,表示对应的调运费用。确定调运方案,需看问题中的限制条件:①B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍。②B地运往E县的赈灾物资数量不超过25吨。故:解得∴40<x≤45∵x为整数∴x的取值为41,42,43,44,45则这批救灾物资的运送方案有五种。方案一:A县救灾物资运往D县41吨,运往E县59吨;B县救灾物资运往D县79吨,运往E县21吨。(其余方案略)⑶设运送这批赈灾物资的总费用为y,由⑵中表格可知:y=220x+250(100-x)+200(120-x)+220(x-20)+200×60+210×20=-10x+60800∵y随x增大而减小,且40<x≤45,x为整数,∴当x=41时,y有最大值。该公司承担运送这批赈灾物资的总费用最多是:y=-10×41+60800=60390(元)求解物资调运问题的一般策略:⑴用表格设置未知数,同时在表格中标记相关数量;⑵根据表格中量的关系写函数式;⑶依题意正确确定自变量的取值范围(一般通过不等式、不等式组确定);⑷根据函数式及自变量的取值范围,结合一次函数的性质,按题设要求确定调运方案。物资调运问题应用广泛,包括调水、调运物资、分配物资等多种类型。3⑵方案比较例2.(2008年盐城)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元)。现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购买门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买方式如图2所示。解答下列问题:⑴方案一中,y与x的函数关系式为;方案二中,当0≤x≤100时,y与x的函数关系式为,当x>100时,y与x的函数关系式为。⑵如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由。⑶甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张?解析:这是一个两种方案的比较问题。方案比较通常与不等式联系紧密。比较优惠条件,即通过比较函数值的大小,确定自变量的区间。⑴中方案一的函数关系式,直接依题意写出:y1=60x+10000(x≥0);方案二的函数关系由图象给出,用待定系数法求解。当0≤x≤100时,图象为过原点的线段,函数式为正比例函数,可求得y2=100x(0≤x≤100);当x>100时,图象为不过原点的射线,函数式为一次函数,过(100,10000),(150,14000),可求得y2=80x+2000(x>100)。⑵购买门票超过100张,比较那种方案最省,了先使y1=y2,求出此时x的值。然后利用不等式确定方案。当y1=y2时,60x+10000=80x+2000,解得x=400,即购买400张门票,两种方案费用相同。当y1>y2时,解得x<400,则当100<x<400时,选择方案二,总费用最省;当y1<y2时,解得x>400,则当x>400时,选择方案一,总费用最省。⑶分两种情况讨论:(用方程求解)①甲单位按方案购买的门票少于100张时,设甲买m(m<100)张,则乙买700-m张。100m+60(700-m)+10000=58000解得m=150(不合题意,舍去)②甲单位按方案购买的门票少于100张时,设甲买m(m>100)张,则乙买700-m张480m+2000+60(700-m)+10000=58000解得m=200,700-m=500求解方案比较问题的一般策略:⑴在方案比较问题中,不同的方案有不同的函数式。因此首先需设法求出不同方案各自的函数式。求函数式时,有图象的,多用待定系数法求;没有给出图象的,直接依题意进行列式。⑵方案比较问题通常都与不等式、方程相联系。比较方案,即比较同一自变量所对应的函数值。要会将函数问题转化为方程、不等式问题。⑶方案比较中尤其要注意不同的区间,多对应的大小关系不同。方案比较问题,在门票、购物、收费、设计等问题中都可涉及。2.2分段函数问题⑴分段价格例3.(2008年襄樊第23题)我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费元;一月用水超过10吨的用户,10吨水仍按每吨元收费,超过10吨的部分,按每吨元(b>a)收费.设一户居民月用水吨,应收水费元,与之间的函数关系如图13所示.(1)求的值;某户居民上月用水8吨,应收水费多少元?(2)求的值,并写出当x>10时,与之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?解析:(1)当时,有.将,代入,得.用8吨水应收水费(元).2)当x>10时,有.将,代入,得∴.故当x>10时,.5(3)因,所以甲、乙两家上月用水均超过10吨.设甲、乙两家上月用水分别为吨,吨,则解之,得故居民甲上月用水16吨,居民乙上月用水12吨.解分段价格问题的一般策略:⑴分段函数的特征是:不同的自变量区间所对应的函数式不同,其函数图象是一个折线。解决分段函数问题,关键是要与所在的区间相对应。⑵分段函数中“折点”既是两段函数的分界点,同时又分别在两段函数上。在求解析式要用好“折点”坐标,同时在分析图象时还要注意“折点”表示的实际意义,“折点”的纵坐标通常是不同区间的最值。⑶分段函数应用广泛,在收费问题、行程问题及几何动态问题中都有应用。⑵几何图形中的动点例4.(2008年长沙第25题)在平面直角坐标系中,一动点P(,y)从M(1,0)出发,沿由A(-1,1),B(-1,-1),C(1,-1),D(1,1)四点组成的正方形边线(如图①)按一定方向运动。图②是P点运动的路程s(个单位)与运动时间(秒)之间的函数图象,图③是P点的纵坐标y与P点运动的路程s之间的函数图象的一部分.(图①)(图②)(图③)(1)s与之间的函数关系式是:;(2)与图③相对应的P点的运动路径是:;P点出6发秒首次到达点B;(3)写出当3≤s≤8时,y与s之间的函数关系式,并在图③中补全函数图象.解析:(1)由图象可知为正比例函数。S=(t≥0)(2)由图象③,M纵坐标为0变为1,则路径为:M→D→A→N,10秒(3)当3≤s<5,即P从A到B时,y=4-s;当5≤s<7,即P从B到C时,y=-1;当7≤s≤8,即P从C到M时,y=s-8.(补全图象略.)求解几何图形中的动点问题一般策略:⑴解决几何图形中的动态问题,关键是看动点运动的路径,在不同的路径上,所对应的线段长(高)等不同,由此引起其它变量的变化。因此根据不同路径以确定自变量的变化区间至关重要。⑵在不同的区间上求函数表达式,应注意紧密结合几何图形的特征,会将将函数中的变量关系转化为几何图形上的对应线段关系。⑶动点(动线)问题,引起图形中相关量的变化,多以面积为主。本题给出的坐标变化相对降低了难度。但给出的图象较多,涉及到路程与时间、路程与坐标三个变量,共两种函数,在解决问题时,应认真审题。2.3数形结合由“形”求式⑴单个函数图象例5.(2008年南京)28.(10分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系.根据图象进行以下探究:信息读取(1)甲、乙两地之间的距离为km;7(2)请解释图中点的实际意义;图象理解(3)求慢车和快车的速度;(4)求线段所表示的与之间的函数关系式,并写出自变量的取值范围;问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?解析:(1)900;(2)图中点的实际意义是:当慢车行驶4h时,慢车和快车相遇.(3)由图象可知,慢车12h行驶的路程为900km,所以慢车的速度为;当慢车行驶4h时,慢车和快车相遇,两车行驶的路程之和为900km,所以慢车和快车行驶的速度之和为,所以快车的速度为150km/h.4)根据题意,快车行驶900km到达乙地,所以快车行驶到达乙地,此时两车之间的距离为,所以点的坐标为.设线段所表示的与之间的函数关系式为,把,代入得解得所以,线段所表示的与之间的函数关系式为.自变量的取值范围是.(5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h.把代入,得.此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km,所以两列快车出发的间隔时间是,即第二列快车比第一列快车晚出发0.75h.单个函数图象求“式”的一般策略:8⑴单个函数图象,尤其是折线图,在读图过程中一定要正确认识和理解图形上点的坐标的实际意义。⑵要关注“折点”所表示的意义,用好折点坐标。⑶用图象求函数式,多用待定系数法,因此要善于寻找图象上点的坐标。一方面可以从图象上寻找,此外还可以结合