11如图,在平面直角坐标系中,已知点A坐标为(2,4),直线2x与x轴相交于点B,连结OA,抛物线2xy从点O沿OA方向平移,与直线2x交于点P,顶点M到A点时停止移动.(1)求线段OA所在直线的函数解析式;(2)设抛物线顶点M的横坐标为m,①用m的代数式表示点P的坐标;②当m为何值时,线段PB最短;(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等,若存在,请求出点Q的坐标;若不存在,请说明理由.2如图所示,已知二次函数图象的顶点坐标为C(1,1),直线,y=kx+m的图象与该二次函数的图象交于A,B两点,其中,点A坐标为(52,134),点B在Y轴上,直线与x轴的交点为F,P为线段AB上的一个动点(点P与A、B不重合),过P作X轴的垂线与这个二次函数的图象交于E点.(1)求k、m的值及这个二次函数的解析式;(2)设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系,并写出自变量x的取值范围;(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在点p,使得以点P、E、D为顶点的三角形与△BOF相似?若存在,请求出P点的坐标;若不存在,请说明理由.yBOAPMx2x23已知:抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OBOC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.(1)求A、B、C三点的坐标;(2)求此抛物线的表达式;(3)求△ABC的面积;(4)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;(5)在(4)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.4.已知,如图抛物线y=ax2+3ax+c(a0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧,点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由。36.如图,已知2(10)(0)2AE,,,,以点A为圆心,以AO长为半径的圆交x轴于另一点B,过点B作BFAE∥交A于点F,直线FE交x轴于点C.(1)求证:直线FC是A的切线;(2)求点C的坐标及直线FC的解析式;(3)有一个半径与A的半径相等,且圆心在x轴上运动的P.若P与直线FC相交于MN,两点,是否存在这样的点P,使PMN△是直角三角形.若存在,求出点P的坐标;若不存在,请说明理由.7.已知抛物线2yaxbxc经过53(33)02PE,,,及原点(00)O,.(1)求抛物线的解析式.(2)过P点作平行于x轴的直线PC交y轴于C点,在抛物线对称轴右侧且位于直线PC下方的抛物线上,任取一点Q,过点Q作直线QA平行于y轴交x轴于A点,交直线PC于B点,直线QA与直线PC及两坐标轴围成矩形OABC(如图).是否存在点Q,使得OPC△与PQB△相似?若存在,求出Q点的坐标;若不存在,请说明理由.(3)如果符合(2)中的Q点在x轴的上方,连结OQ,矩形OABC内的四个三角形OPCPQBOQPOQA,,,△△△△之间存在怎样的关系?为什么?xyABCOFEEAQBPCOyx41.已知抛物线()与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.(1)填空:试用含的代数式分别表示点与的坐标,则;(2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;(3)在抛物线()上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.3.如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.(1)求抛物线的解析式;(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连结BD,求直线BD的解析式;(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.52.如图,抛物线23yaxbx与x轴交于AB,两点,与y轴交于C点,且经过点(23)a,,对称轴是直线1x,顶点是M.(1)求抛物线对应的函数表达式;(2)经过C,M两点作直线与x轴交于点N,在抛物线上是否存在这样的点P,使以点PACN,,,为顶点的四边形为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)设直线3yx与y轴的交点是D,在线段BD上任取一点E(不与BD,重合),经过ABE,,三点的圆交直线BC于点F,试判断AEF△的形状,并说明理由;(4)当E是直线3yx上任意一点时,(3)中的结论是否成立?(请直接写出结论).OBxyAMC13(第25题图)