动态图形面积问题专题复习1.如图,已知正方形ABCD的边长与Rt△PQR的直角边PQ的长均为4厘米,QR=8厘米,AB与QR在同一条直线l上.开始时点Q与点B重合,让△PQR以1厘米/秒速度在直线l上向左匀速运动,直至点R与点A重合为止,t秒时△PQR与正方形ABCD重叠部分的面积记为S平方厘米.(1)当t=3秒时,求S的值.(2)求S与t之间的函数关系式,并写出自变量t的取值范围.(3)写出t为何值时,重叠部分的面积S有最大值,最大值是多少?解:(1)当t=3秒时,如图①所示.设PR与BC交于点M,则QB=3,BR=QR-QB=5.∵Rt△MBR∽Rt△PQR,∴BRBM=QRQP,即5BM=84.∴BM=25.·······································2分∴S=21(QP+BM)·QB=21×(4+25)×3=439(平方厘米).·································3分(2)①当0≤t≤4时,如图①所示,则QB=t,BR=8-t.由(1)知BRBM=QRQP,即tBM8=84,∴BM=28t.∴S=21(QP+BM)·QB=21×(4+28t)·t=-41t2+4t.······················································5分②当4<t≤8时,如图②所示.设PR分别与DA、CB交于点M、N,则QB=t,BR=8-t,QA=t-4,AR=QR-QA=8-(t-4)=12-t.∵Rt△MAR∽Rt△PQR,∴ARAM=QRQP,即tAM12=84,∴AM=212t.∵Rt△NBR∽Rt△PQR,∴BRBN=QRQP,即tBN8=84,∴BN=28t.∴S=21(AM+BN)·AB=21×(212t+28t)×4=20-2t.···································8分③当8<t≤12时,如图③所示.设PR交DA于点M,则QB=t,RB=t-8,AR=AB-RB=4-(t-8)=12-t.∵Rt△MAR∽Rt△PQR,∴ARAM=QRQP.ABQPRCDlABQPRCDlM图①ABQPRCDlM图②NABCDlM图③QPR即tAM12=84,∴AM=212t.∴S=21AM·AR=21×212t×(12-t)=41t2-6t+36.·······································10分综上所述,S=3664122044122ttttt(3)当t=4时,重叠部分的面积S有最大值,最大值是12平方厘米.··················12分2.如图,直线y=-43x+6分别与x轴、y轴交于A、B两点;直线y=45x与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿x轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN,设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒).(1)求点C的坐标;(2)当0<t<5时,求S与t之间的函数关系式;(3)求(2)中S的最大值;(4)当t>0时,直接写出点(4,29)在正方形PQMN内部时t的取值范围.解:(1)由题意,得xxyy45643=+=-解得4153==yx∴点C的坐标为(3,415).·············································································1分(2)根据题意,得AE=t,OE=8-t.∴点Q的纵坐标为45(8-t),点P的纵坐标为43t.∴PQ=45(8-t)-43t=10-2tAEPCQMNDOBxy当MN在AD上时,10-2t=t,∴t=310.···························································3分当0<t≤310时,S=t(10-2t),即S=-2t2+10t当310≤t<5时,S=(10-2t)2,即S=4t2-40t+100.···········································5分(3)当0<t≤310时,S=-2t2+10t=-2(t-25)2+225当t=25时,S最大值=225;当310≤t<5时,S=4t2-40t+100=4(t-5)2,S随t的增大而减小∴t=310时,S最大值=4(310-5)2=9100∵225>9100,∴S的最大值为225.···································································7分(4)4<t<522.·························································································10分3.如图,已知直线l1:y=32x+38与直线l2:y=-2x+16相交于点C,l1、l2分别交x轴于A、B两点.矩形DEFG的顶点D、E分别在直线l1、l2上,顶点F、G都在x轴上,且点G与点B重合.(1)求△ABC的面积;(2)求矩形DEFG的边DE与EF的长;(3)若矩形DEFG从原地出发,沿x轴的反方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t≤12)秒,矩形DEFG与△ABC重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范围;(4)S是否存在最大值?若存在,请直接写出最大值及相应的t值,若不存在,请说明理由.解:(1)将y=0代入y=32x+38,得x=-4,∴点A的坐标为(-4,0),∴OA=4.将y=0代入y=-2x+16,得x=8,∴点B的坐标为(8,0),∴OB=8.∴AB=OA+OB=4+8=12········································································1分联立1623832+=+=-xxyy,解得65==yx,∴点C的坐标为(5,6).··························2分ABOyxFED(G)l1l2C∴S△ABC=AB21·yC=21×12×6=36···························································3分(2)∵点D在直线l1上且xD=xB=8,∴yD=32×8+38=8.∴点D的坐标为(8,8).········································································4分又∵点E在直线l2上且yE=yD=8,∴-2xE+16=8,∴xE=4.∴点E的坐标为(4,8).·········································································5分∴DE=8-4=4,EF=8.·········································································6分(3)过点C作CM⊥AB于M.∵C(5,6),∴OM=5,CM=6,∴MB=OB-OM=8-5=3,∴AM=AB-MB=12-3=9,AB-FG=12-4=8,AG=AB-GB=12-t,AF=AG-FG=12-t-4=8-t.①当0≤t<3时,如图1,矩形DEFG与△ABC重叠部分为五边形CHFGR(t=0时,为四边形CHFG).∵Rt△RGB∽Rt△CMB,∴GBRG=MBCM,即tRG=36,∴RG=2t.∵Rt△AFH∽Rt△AMC,∴AFHF=AMCM.即tHF-8=96,∴HF=32(8-t).∴S=S△ABC-S△BRG-S△AFH=36-21×t×2t-21(8-t)×32(8-t)=-34t2+316t+344即S=-34t2+316t+344(0≤t<3).·····················································8分②当3≤t<8时,如图2,矩形DEFG与△ABC重叠部分为梯形HFGR.∵Rt△AGR∽Rt△AMC.∴AGRG=AMCM,即tRG-12=96,∴RG=32(12-t).=21(HF+RG)·FG=21[32(8-t)+32(12-t)]×4=-38t+380即S=-38t+380(3≤t<8).························10分③当8≤t<12时,如图3,矩形DEFG与△ABC重叠部分为Rt△AGR.∴S=SRt△AGRABOyxFEDl1l2CGMHR图1ABOyxFEDl1l2CGMHR图2=21AG·RG=21(12-t)×32(12-t)=31t2-8t+48即S=31t2-8t+48(8≤t<12).····················12分(4)存在,当t=2时,S最大=20.························14分4.如图,直线l的解析式为y=-x+4,它与x轴、y轴分别相交于A、B两点.平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4).(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2,①当2<t≤4时,试探究S2与t之间的函数关系式;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的165?解:(1)当x=0时,y=4;当y=0时,x=4.∴A(4,0),B(0,4);····································2分(2)∵MN∥AB,∴ONOM=OBOA=1.∴OM=ON=t.∴S1=21OM·ON=21t2;································4分(3)①当2<t≤4时,易知点P在△OAB的外面,且点P的坐标为(t,t).设PN、PM与直线l分别相交于E、F两点,如图2.则F点的坐标满足4ttxy-==即F(t,4-t).同理可得E(4-t,t),则PF=PE=|t-(4-t)|=2t-4.·······································6分∴S2=S△PNM-S△PEF=S△MON-S△PEFxNOyABPMmlxNOyABPMmlFPEABOyxFEDl1l2CGMR图3=21t2-21PE·PF=21t2-21(2t-4)2=-23t2+8t-8;8分②S△OAB=21×4×4=8当<t≤2时,S2=21t2.由题意,得21t2=165×8=25.解得t1=-5<0,t1=5>2,均不合题意,舍去;·········································10分当2<t≤4时,S2=-23t2+8t-8=25.解得t3=37,t4=3.综上所述,当t=37或t=3时,S2为△OAB的面积的165.····································12分xNOyABPMmlFPE图2xNOyABPMml图1