中考数学填空题四大解题技巧数学填空题的类型一般可分为:完形填空题、多选填空题、条件与结论开放的填空题.这说明了填空题是数学中考命题重要的组成部分,它约占了整张试卷的三分之一。因此,我们在备考时,既要关注这一新动向,又要做好应试的技能准备.解题时,要有合理的分析和判断,要求推理、运算的每一步骤都正确无误,还要求将答案表达得准确、完整.合情推理、优化思路、少算多思将是快速、准确地解答填空题的基本要求。一、直接法这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。它是解填空题的最基本、最常用的方法。使用直接法解填空题,要善于通过现象看本质,熟练应用解方程和解不等式的方法,自觉地、有意识地采取灵活、简捷的解法。二、特殊化法当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论。这样可大大地简化推理、论证的过程。三、数形结合法数缺形时少直观,形缺数时难入微。数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。我们要将抽象、复杂的数量关系,通过形的形象、直观揭示出来,以达到形帮数的目的;同时我们又要运用数的规律、数值的计算,来寻找处理形的方法,来达到数促形的目的。对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。四、等价转化法通过化复杂为简单、化陌生为熟悉,将问题等价地转化成便于解决的问题,从而得出正确的结果。给中考数学基础薄弱考生的备考建议一些数学基础薄弱,但是决不会也不能放弃这一科的同学,怎么做才能在这关键的意念中提高成绩?我们为您整理了下面的资料供您参考。因为数学这门课连贯性很强,前面的知识没学会,后面的内容是建立在前面已有知识的基础之上的,而且函数和圆都是难点,所以这部分同学上课时会有很多地方听不懂,特别是复习课上老师讲到综合题时,这些同学更是不知所措。其实这部分同学心中也很苦闷,他们不是不想学,而是由于基础差不只如何是好。我想对这部分学生提几点建议。1.要建立足够的信心。这时不要轻言放弃,因为我们还有约一年的时间,虽然难题我们做着有难度,但是基础题和一些中档题经过努力是可以掌握的。中考试卷中有60分的基础题,35分的中档题,这就是95分!一定坚信自己在中考中最低也能得到基础题的分值。2.具体怎么做?第一,在第一轮基础复习阶段,要集中所有注意力,争取把基础概念和基本方法补上来,每天的基础测验要认真对待、弄清每道题的做法,认真自觉地改错,改错后一定再让老师批改,确认正确才可以。明确每天只要掌握一两道基础题的解法就是收获。平时主动与老师沟通,得到老师的帮助和理解。第二,反复训练。任何知识不可能只练一遍就掌握,必须反复不断练习,多次重复才能巩固。第三,正确看待每次考试的分数。经过努力有些同学的成绩可能还是不理想,但是我们一定要看清楚:在基础题的这部分份额中自己是否进步了。中考复习过程实际上也是对学习毅力的一次考查和检验,只要持之以恒,就一定能够取得成绩。中考备考:数学成功复习九箴言吃透考纲把握动向在复习中,很重要的一点是要有针对性,提高效率,避免做无用功。在对基本的知识点融会贯通的基础上,认真研究考纲,不仅要明确考试的内容,更要对考纲对知识点的要求了然于心。平时多关注近年中考试题的变化及其相应的评价报告,多层次、多方位地了解中考信息,使复习有的放矢,事半功倍。围绕课本注重基础从近几年的上海中考数学卷来看,都很重视基础知识,突出教材的考查功能。试题至少有一半以上来源于教材,强调对通性通法的考查。针对这一情况,提醒考生,在剩下的不多的复习时间里,必须注意回归课本,围绕课本回忆和梳理知识点,对典型问题进行分析、解构、熟悉。只有透彻理解课本例题、习题所涵盖的知识重点和解题方法,才能以不变应万变。针对专题攻克板块复习中,应加强各知识板块的综合。对于重点知识的交叉点和结合点,进行必要的针对性专题复习。例如,函数是整个中学数学中非常重要的部分,可以以它为主干,与不等式、方程、相似形等结合起来,进行综合复习。规范训练提高效率学生常常把计算错误简单地归结为粗心,其实不然,这有可能是基础不牢固,也有可能是技巧不熟练。建议考生,在复习阶段要注重培养自己在解题中的运算能力,每次练习做到熟练、准确、简捷、迅速。经验表明,每次作业、考试后建立的错题本,是学生检查和总结自身薄弱环节的有效方式。在复习阶段,考生需要的就是一些行之有效的方法,帮助他们更合理有效地利用时间,集中精力,提高效率。中考数学备考:如何将所学到的知识系统化图形与证明部分学习教材分《证明(二)》和《证明(三)》两章完成,我们在学习过程中要结合之前学过的《证明(一)》内容不断体会证明的必要性,训练自己利用公理和已证明过的定理(推论)来说理的过程,要注意证明的格式,必须有因才有果,切不可跳步。除了说理,另外我们还需要有意识地在证明三角形和四边形的定理和推论时梳理知识结构,归纳性质和判定方法,为总复习打基础。九年级还将学习一元二次方程,它的解法很多:因式分解法、公式法和配方法。因式分解法很简便,公式法应用普遍但公式一定要记牢,配方法是个难点,但它对以后二次函数的学习很有帮助,要牢固掌握。我们还要学会“对症下药”,选择最好的方法来解每一个方程。另外一个学习重点也是难点就是如何用一元二次方程来解决具体问题,在学习过程中大家可以回顾用一元一次方程或二元一次方程组解决实际问题的步骤。特别注意方程的解要符合实际情况。有关函数九年级我们不仅要讨论反比例函数还要学习二次函数,结合已学过的一次函数,它们的一个重要学习方法就是“数形结合”。对于三种函数的表达式、图像及其性质我们都要重点掌握。另外利用三种函数来解决实际问题依然是我们学习的重点和难点。统计和概率部分的学习希望大家能先将前四册教材涉及的有关章节复习一下,你会发现九年级上下两章的学习内容更加贴近实际生活,因此难度也有所增加。“用大量重复实验中事件发生的频率来估计这件事件发生的概率”这一方法大家要理解,而如何用列表格或树状图的方法来解决求事件发生概率依然是我们学习的重点。《视图与投影》这一章延续了七年级有关三视图的内容,但我们需要考虑视线所不及的部分的形状,首先复习三视图是基本任务。投影所说的是两种光源所形成的平行投影和中心投影,大家一定要结合生活经验来学习。圆是我们要新认识的图形。需要大家掌握的基本概念较多,作为应用的重点主要集中在有关切线的证明、弧长、扇形面积和圆锥侧面积的计算上。计算能力大家在平时一定要有意识的去提高。用三角函数解决直角三角形这一章我们既要掌握基本概念,还要会根据角度来求三角函数值及由函数值来推出锐角的度数。九个特殊锐角的三角函数值是必须记住的。另外大家在学习过程中要体会这部分内容与相似图形的联系,把所学知识系统化。中考数学备考:重视常用公式技巧重视常用公式技巧——做到思维敏捷准确对经常使用的数学公式要理解来龙去脉,要进一步了解其推理过程,并对推导过程中产生的一些可能变化自行探究。对今后继续学习所必须的知识和技能,对生活实际经常用到的常识,也要进行必要的训练。例如:1-20的平方数;简单的勾股数;正三角形的面积公式以及高和边长的关系;30°、45°直角三角形三边的关系……这样做,一定能更好地掌握公式并胜过做大量习题,而且往往会有意想不到的效果。中考数学复习必知技巧新初三学生已经开学一个月的时间了,学生开始面临中考的压力,在所有学科中,很多学生最担心的就是数学成绩的提高,不少学生早早的开始了中考数学的复习。但如何让中考数学复习能够有效果呢?复习可以通过掌握以下几个关键,来提升自己的成绩。一、模拟训练关键是选好模拟试题,要按照初中毕业生学业考试说明要求,结合中考数学试卷的结构特点和命题趋势,选择真正具有模拟性的模拟试题。时间的安排,题量的多少,低、中、高档题的比例,总体难度的控制等都要符合中考要求。二、模拟测试后,要及时对答案,趁热打铁,有利于及时查漏补缺,复习效果明显提高。同事要对自己做的卷子评分,严格按照中考评分要求,以便掌握自身的复习水平。三、留给自己一定的纠错和消化时间。教师讲过的内容,要整理下来;教师没讲的自己解错的题要纠错;与之相关的基础知识要再记忆再巩固。四、适当的“解放”,特别是在时间安排上。经过一段时间的考、考、考,几乎所有的学生心身都会感到疲劳,如果把这种疲劳的状态带进中考考场,那肯定是个较差的结果。但要注意,解放不是放松,必须保证有个适度紧张的精神状态。实践证明,适度紧张是正常或者超常发挥的最佳状态。调节的生物钟,尽量把学习、思考的时间调整得与中考答卷时间相吻合,关注的心态和信心调整,此时此刻学生的信心的作用变为了最大。中考数学压轴题的解题策略具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。1、以坐标系为桥梁,运用数形结合思想纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。2、以直线或抛物线知识为载体,运用函数与方程思想直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。3、利用条件或结论的多变性,运用分类讨论的思想分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。4、综合多个知识点,运用等价转换思想任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。5、分题得分:中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。6、分段得分:一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,分段得分的根据是“分段评分”,中考的评分是按照题目所考察的知识点分段评分,踏上知识点就给分,多踏多给分。因此,对中考压轴题要理解多少做多少,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏。中考数学复习方法:解题实用方法汇编1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。2、因式分解法因式分解,就是把一个多项式化成几个整式