中考数学考前方程组不等式组的解法及应用复习

整理文档很辛苦,赏杯茶钱您下走!

免费阅读已结束,点击下载阅读编辑剩下 ...

阅读已结束,您可以下载文档离线阅读编辑

资源描述

-----更多试题资料请关注明师题库(微号:mstiku)更多作文资料请关注明师作文(微号:mszuowen)!-----中考数学考前方程组不等式组的解法及应用复习本专题主要考查方程(组)、不等式(组)的解法以及方程(组)和不等式的应用,在中考中往往以解答题的形式出现,属中档题.复习时要熟练掌握方程(组)与不等式(组)的解法以及它们的应用,并会检验解答结果的正确与否.类型1方程(组)的解法1.(2013·梧州)解方程:12x+2·(54x+1)=8+x2.(2014·遂宁)解方程:x2+2x-3=0.3.(2014·淄博)解方程:3x-71x=0.4.(2014·甘孜)解方程组:31,26.xyxy①②-----更多试题资料请关注明师题库(微号:mstiku)更多作文资料请关注明师作文(微号:mszuowen)!-----5.(2013·桂林)解二元一次方程组:3219,21.xyxy①②类型2不等式(组)的解法1.(2013·绍兴)解不等式:12x+13x≤1.2.(2014·南京)解不等式组:32,424.xxxx①②3.(2013·广元)解不等式组:3241214xxxx,①,②并把解集在数轴上表示出来.4.(2014·毕节改编)解不等式组:124323622731.xxxxx,①②并指出它的所有的非负整数解.-----更多试题资料请关注明师题库(微号:mstiku)更多作文资料请关注明师作文(微号:mszuowen)!-----类型3方程(组)的应用1.(2014·菏泽)食品安全是关乎民生的问题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A,B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克.已知270克该添加剂恰好生产了A,B两种饮料共100瓶,问A,B两种饮料各生产了多少瓶?2.(2014·云南)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花,已知第二批所购花的盒数是第一批所购花的盒数的2倍,且每盒花的进价比第一批的进价少5元,求第一批盒装花每盒的进价是多少元?3.(2014·咸宁)随着市民环保意识的增强,烟花爆竹销售量逐年下降.咸宁市2011年销售烟花爆竹20万箱,到2013年烟花爆竹销售量为9.8万箱.求咸宁市2011年到2013年烟花爆竹年销售量的平均下降率.4.(2014·扬州)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件-----更多试题资料请关注明师题库(微号:mstiku)更多作文资料请关注明师作文(微号:mszuowen)!-----数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?5.(2014·株洲)家住山脚下的孔明同学想从家出发登山游玩,据以往的经验,他获得如下信息:(1)他下山时的速度比上山时的速度每小时快1千米;(2)他上山2小时到达的位置,离山顶还有1千米;(3)抄近路下山,下山路程比上山路程近2千米;(4)下山用1个小时;根据上面信息,他作出如下计划:在山顶游览1个小时;中午12:00回到家吃中餐.若依据以上信息和计划登山游玩,请问:孔明同学应该在什么时间从家出发?6.(2014·淄博)为鼓励居民节约用电,某省试行阶梯电价收费制,具体执行方案如下:档次每户每月用电数(度)执行电价(元/度)第一档小于等于2000.55第二档大于200小于4000.6-----更多试题资料请关注明师题库(微号:mstiku)更多作文资料请关注明师作文(微号:mszuowen)!-----第三档大于等于4000.85例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各用电多少度?类型4不等式的应用1.(2013·台州)某校班际篮球联赛中,每场比赛都要分出胜负,每队胜1场得3分,负1场得1分.如果某班要在第一轮的28场比赛中至少得43分,那么这个班至少要胜多少场?2.(2014·长沙)为建设“秀美幸福之市”,长沙市绿化提质改造工程正如火如荼地进行.某施工队计划购买甲乙两种树苗共400棵对芙蓉路的某标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?-----更多试题资料请关注明师题库(微号:mstiku)更多作文资料请关注明师作文(微号:mszuowen)!-----3.同庆中学为丰富学生的校园生活,准备从军跃体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)求购买一个足球、一个篮球各需多少元?(2)根据同庆中学实际情况,需从军跃体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?参考答案类型1方程(组)的解法1.去括号,得12x+52x+2=8+x,移项,得12x+52x-x=8-2,合并同类项,得2x=6,系数化为1,得x=3.2.∵a=1,b=2,c=-3,b2-4ac=22-4×1×(-3)=160,∴x=2162=242.∴x1=1,x2=-3.-----更多试题资料请关注明师题库(微号:mstiku)更多作文资料请关注明师作文(微号:mszuowen)!-----3.3(x+1)-7x=0.x=34.经检验,x=34是原方程的解.4.②-①,得y=1.把y=1代入①,得x=4.∴原方程组的解为4,1.xy5.解法1(代入法):由②,得y=2x-1,③把③代入①,得3x+4x-2=19,解得x=3.把x=3代入③,得y=5.所以原方程组的解为3,5.xy解法2(加减法):②×2,得4x-2y=2,③①+③,得7x=21,解得x=3.把x=3代入②,得6-y=1,解得y=5.所以原方程组的解为3,5.xy类型2不等式(组)的解法1.不等式两边同时乘以6,得3(x+1)+2(x-1)≤6,化简,得3x+3+2x-2≤6,∴x≤1.2.解不等式①,得x≥1.解不等式②,得x<2.所以不等式组的解集是1≤x<2.-----更多试题资料请关注明师题库(微号:mstiku)更多作文资料请关注明师作文(微号:mszuowen)!-----3.解不等式①得x≥1.解不等式②得x32.∴此不等式组的解集是1≤x32.不等式组的解集在数轴上表示为:4.解不等式①,得x≤1.解不等式②,得x≥-4.∴不等式组的解集为-4≤x≤1.∴不等式组的所有的非负整数解为0,1.类型3方程(组)的应用1.方法一:设A饮料生产了x瓶,则B饮料生产了(100-x)瓶.根据题意,得2x+3(100-x)=270.解得x=30.100-x=70.答:A饮料生产了30瓶,B饮料生产了70瓶.方法二:设A饮料生产了x瓶,则B饮料生产了y瓶.根据题意,得100,23y270.xyx解得30,70.xy答:A饮料生产了30瓶,B饮料生产了70瓶.2.设第一批盒装花每盒的进价是x元,由题意,得2×3000x=50005x.解得x=30.经检验,x=30是方程的解.答:第一批盒装花每盒的进价是30元.3.设咸宁市2011年到2013年烟花爆竹年销售量的平均下降率为x,由题意,得-----更多试题资料请关注明师题库(微号:mstiku)更多作文资料请关注明师作文(微号:mszuowen)!-----20(1-x)2=9.8.解得x1=0.3=30%,x2=1.7=170%(不符合题意,舍去).答:咸宁市2011年到2013年烟花爆竹年销售量的平均下降率为30%.4.设原来每天制作x件,由题意得480x-10=480150%x.解得x=16.经检验,x=16是原分式方程的解.答:原来每天制作16件.5.设上山路程x千米,则下山路程为(x-2)千米,由题意,得(21x-1)×2=x-1.解得x=5.∴上山时间:2.5小时;中间游览1小时;下山时间1小时;要在12:00回到家吃中餐,需要12-2.5-1-1=7.5(小时),即7:30分从家里出发.6.因为两个月用电量为500度,所以每个月用电量不可能都在第一档,假设该用户五月、六月每月用电均超过200度,此时的电费共计:500×0.6=300(元),而300290.5,不符合题意,又因为六月份用电量大于五月份,所以五月份用电量在第一档,六月份用电量在第二档.设五月份用电x度,六月份用电y度,根据题意,得0.550.6290.5500.xyxy,解得190310.xy,答:该户居民五、六月份各用电190度、310度.类型4不等式的应用1.设这个班要胜x场,则负(28-x)场,由题意,得3x+(28-x)≥43.解得x≥7.5.因为场次x为非负整数,故x≥8.-----更多试题资料请关注明师题库(微号:mstiku)更多作文资料请关注明师作文(微号:mszuowen)!-----答:这个班至少要胜8场.2.(1)设需购买甲种树苗x棵,则需购买乙种树苗(400-x)棵,依题意,得200x+300(400-x)=90000.解得x=300.∴400-x=100.答:需购买甲种树苗300棵,乙种树苗100棵.(2)设应购买甲种树苗y棵,由题意,得200y≥300(400-y).解得y≥240.答:至少要购买甲种树苗240棵.3.(1)设购买一个足球需要x元,购买一个篮球需要y元,由题意,得32310,25500.xyxy解得50,80.xy答:购买一个足球需要50元,购买一个篮球需要80元.(2)设购买a个篮球,则购买(96-a)个足球,则根据题意,得80a+50(96-a)≤5720,解得a≤3023.∵a为非负整数,∴a最多是30.答:这所中学最多可以购买30个篮球.

1 / 10
下载文档,编辑使用

©2015-2020 m.777doc.com 三七文档.

备案号:鲁ICP备2024069028号-1 客服联系 QQ:2149211541

×
保存成功